Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Large-scale Online Ridesharing: The Effect of Assignment Optimality on System Performance

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00364463" target="_blank" >RIV/68407700:21230/22:00364463 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1080/15472450.2022.2121651" target="_blank" >https://doi.org/10.1080/15472450.2022.2121651</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1080/15472450.2022.2121651" target="_blank" >10.1080/15472450.2022.2121651</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Large-scale Online Ridesharing: The Effect of Assignment Optimality on System Performance

  • Popis výsledku v původním jazyce

    Mobility-on-demand (MoD) systems consist of a fleet of shared vehicles that can be hailed for one-way point-to-point trips. The total distance driven by the vehicles and the fleet size can be reduced by employing ridesharing, i.e., by assigning multiple passengers to one vehicle. However, finding the optimal passenger-vehicle assignment in an MoD system is a hard combinatorial problem. In this work, we demonstrate how the VGA method, a recently proposed systematic method for ridesharing, can be used to compute the optimal passenger-vehicle assignments and corresponding vehicle routes in a massive-scale MoD system. In contrast to existing works, we solve all passenger-vehicle assignment problems to optimality, regularly dealing with instances containing thousands of vehicles and passengers. Moreover, to examine the impact of using optimal ridesharing assignments, we compare the performance of an MoD system that uses optimal assignments against an MoD system that uses assignments computed using insertion heuristic and against an MoD system that uses no ridesharing. We found that the system that uses optimal ridesharing assignments subject to the maximum travel delay of 4 minutes reduces the vehicle distance driven by 57% compared to an MoD system without ridesharing. Furthermore, we found that the optimal assignments result in a 20% reduction in vehicle distance driven and 5% lower average passenger travel delay compared to a system that uses insertion heuristic.

  • Název v anglickém jazyce

    Large-scale Online Ridesharing: The Effect of Assignment Optimality on System Performance

  • Popis výsledku anglicky

    Mobility-on-demand (MoD) systems consist of a fleet of shared vehicles that can be hailed for one-way point-to-point trips. The total distance driven by the vehicles and the fleet size can be reduced by employing ridesharing, i.e., by assigning multiple passengers to one vehicle. However, finding the optimal passenger-vehicle assignment in an MoD system is a hard combinatorial problem. In this work, we demonstrate how the VGA method, a recently proposed systematic method for ridesharing, can be used to compute the optimal passenger-vehicle assignments and corresponding vehicle routes in a massive-scale MoD system. In contrast to existing works, we solve all passenger-vehicle assignment problems to optimality, regularly dealing with instances containing thousands of vehicles and passengers. Moreover, to examine the impact of using optimal ridesharing assignments, we compare the performance of an MoD system that uses optimal assignments against an MoD system that uses assignments computed using insertion heuristic and against an MoD system that uses no ridesharing. We found that the system that uses optimal ridesharing assignments subject to the maximum travel delay of 4 minutes reduces the vehicle distance driven by 57% compared to an MoD system without ridesharing. Furthermore, we found that the optimal assignments result in a 20% reduction in vehicle distance driven and 5% lower average passenger travel delay compared to a system that uses insertion heuristic.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Intelligent Transportation Systems

  • ISSN

    1547-2450

  • e-ISSN

    1547-2442

  • Svazek periodika

    28

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    22

  • Strana od-do

    189-210

  • Kód UT WoS článku

    000894280500001

  • EID výsledku v databázi Scopus

    2-s2.0-85143292722