Failure Prediction by Utilizing Log Analysis: A Systematic Mapping Study
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00352540" target="_blank" >RIV/68407700:21230/20:00352540 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1145/3400286.3418263" target="_blank" >https://doi.org/10.1145/3400286.3418263</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3400286.3418263" target="_blank" >10.1145/3400286.3418263</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Failure Prediction by Utilizing Log Analysis: A Systematic Mapping Study
Popis výsledku v původním jazyce
In modern computing, log files provide a wealth of information regarding the past of a system, including the system failures and security breaches that cost companies and developers a fortune in both time and money. While this information can be used to attempt to recover from a problem, such an approach merely mitigates the damage that has already been done. Detecting problems, however, is not the only information that can be gathered from log files. It is common knowledge that segments of log files, if analyzed correctly, can yield a good idea of what the system is likely going to do next in real-time, allowing a system to take corrective action before any negative actions occur. In this paper, the authors put forth a systematic map of this field of log prediction, screening several hundred papers and finally narrowing down the field to approximately 30 relevant papers. These papers, when broken down, give a good idea of the state of the art, methodologies employed, and future challenges that still must be overcome. Findings and conclusions of this study can be applied to a variety of software systems and components, including classical software systems, as well as software parts of control, or the Internet of Things (IoT) systems.
Název v anglickém jazyce
Failure Prediction by Utilizing Log Analysis: A Systematic Mapping Study
Popis výsledku anglicky
In modern computing, log files provide a wealth of information regarding the past of a system, including the system failures and security breaches that cost companies and developers a fortune in both time and money. While this information can be used to attempt to recover from a problem, such an approach merely mitigates the damage that has already been done. Detecting problems, however, is not the only information that can be gathered from log files. It is common knowledge that segments of log files, if analyzed correctly, can yield a good idea of what the system is likely going to do next in real-time, allowing a system to take corrective action before any negative actions occur. In this paper, the authors put forth a systematic map of this field of log prediction, screening several hundred papers and finally narrowing down the field to approximately 30 relevant papers. These papers, when broken down, give a good idea of the state of the art, methodologies employed, and future challenges that still must be overcome. Findings and conclusions of this study can be applied to a variety of software systems and components, including classical software systems, as well as software parts of control, or the Internet of Things (IoT) systems.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the International Conference on Research in Adaptive and Convergent Systems
ISBN
978-1-4503-8025-6
ISSN
2153-1633
e-ISSN
—
Počet stran výsledku
8
Strana od-do
188-195
Název nakladatele
ACM
Místo vydání
New York
Místo konání akce
Gwangju
Datum konání akce
13. 10. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—