SELECTIVE SENSING OF VOLATILE ORGANIC COMPOUNDS VIA A TEMPERATURE MODULATION OF METAL OXIDE GAS SENSORS WITH PRINCIPAL COMPONENT ANALYSIS
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00359536" target="_blank" >RIV/68407700:21230/20:00359536 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.37904/nanocon.2019.8731" target="_blank" >https://doi.org/10.37904/nanocon.2019.8731</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.37904/nanocon.2019.8731" target="_blank" >10.37904/nanocon.2019.8731</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
SELECTIVE SENSING OF VOLATILE ORGANIC COMPOUNDS VIA A TEMPERATURE MODULATION OF METAL OXIDE GAS SENSORS WITH PRINCIPAL COMPONENT ANALYSIS
Popis výsledku v původním jazyce
The measurements of volatile organic compounds are becoming more important due to stringent environmental regulations and increasing health concerns. The human breath which includes many volatile organic compounds that can be used as biomarkers for different diseases as well. Metal oxide (MOX) sensors are well known as multifunction nanomaterials and employing MOX in detecting VOCs is one of the most studied areas. The advantages of metal oxide sensors are well known as low costs, short response time and versatility. Currently, these sensors are sufficiently sensitive for most applications. However, the use of them is limited due to their lack of selectivity, which has stimulated researchers to look for different strategies to overcome this drawback. Sensing mechanisms of gas sensors depend on temperature, and this is, in particular, true for metal-oxide semiconductors where the peculiar role of temperature suggested the modulation of temperature as a viable method to tune selectivity and sensitivity. In this work, a device consisted of metal oxide gas sensor array has been used to discriminate different volatile organic compounds. The device consists of three MOX commercial sensors (ASMLN, AS-MLK, AS-MLC), The behavior of these sensors was measured at different ranges of temperature. By Principal Component Analysis (PCA) as a recognition algorithm and modulated temperature, selective sensing has been accomplished.
Název v anglickém jazyce
SELECTIVE SENSING OF VOLATILE ORGANIC COMPOUNDS VIA A TEMPERATURE MODULATION OF METAL OXIDE GAS SENSORS WITH PRINCIPAL COMPONENT ANALYSIS
Popis výsledku anglicky
The measurements of volatile organic compounds are becoming more important due to stringent environmental regulations and increasing health concerns. The human breath which includes many volatile organic compounds that can be used as biomarkers for different diseases as well. Metal oxide (MOX) sensors are well known as multifunction nanomaterials and employing MOX in detecting VOCs is one of the most studied areas. The advantages of metal oxide sensors are well known as low costs, short response time and versatility. Currently, these sensors are sufficiently sensitive for most applications. However, the use of them is limited due to their lack of selectivity, which has stimulated researchers to look for different strategies to overcome this drawback. Sensing mechanisms of gas sensors depend on temperature, and this is, in particular, true for metal-oxide semiconductors where the peculiar role of temperature suggested the modulation of temperature as a viable method to tune selectivity and sensitivity. In this work, a device consisted of metal oxide gas sensor array has been used to discriminate different volatile organic compounds. The device consists of three MOX commercial sensors (ASMLN, AS-MLK, AS-MLC), The behavior of these sensors was measured at different ranges of temperature. By Principal Component Analysis (PCA) as a recognition algorithm and modulated temperature, selective sensing has been accomplished.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings 11th International Conference on Nanomaterials - Research & Application
ISBN
978-80-87294-95-6
ISSN
2694-930X
e-ISSN
—
Počet stran výsledku
5
Strana od-do
262-266
Název nakladatele
Tanger
Místo vydání
Ostrava
Místo konání akce
Brno
Datum konání akce
16. 10. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000664115400043