QuadStack: An Efficient Representation and Direct Rendering of Layered Datasets
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00343857" target="_blank" >RIV/68407700:21230/21:00343857 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/TVCG.2020.2981565" target="_blank" >https://doi.org/10.1109/TVCG.2020.2981565</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TVCG.2020.2981565" target="_blank" >10.1109/TVCG.2020.2981565</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
QuadStack: An Efficient Representation and Direct Rendering of Layered Datasets
Popis výsledku v původním jazyce
We introduce QuadStack, a novel algorithm for volumetric data compression and direct rendering. Our algorithm exploits the data redundancy often found in layered datasets that are common in science and engineering fields such as geology, biology, mechanical engineering, medicine, etc. QuadStack first compresses the volumetric data into vertical stacks that are then compressed into a quadtree that identifies and represents the layered structures at the internal nodes. The associated data (color, material, density, etc.) and shape of these layer structures are decoupled and encoded independently, leading to high compression rates (4x to 45x) of the original voxel model memory footprint in our experiments). We also introduce an algorithm for value retrieving from the QuadStack representation and we show that the access has logarithmic complexity. Because of the fast access, QuadStack is suitable for efficient data representation and direct rendering and we show that our GPU implementation performs comparable in speed with the state-of-the-art algorithms (18-79 MRays/s in our implementation), while maintaining a significantly smaller memory footprint
Název v anglickém jazyce
QuadStack: An Efficient Representation and Direct Rendering of Layered Datasets
Popis výsledku anglicky
We introduce QuadStack, a novel algorithm for volumetric data compression and direct rendering. Our algorithm exploits the data redundancy often found in layered datasets that are common in science and engineering fields such as geology, biology, mechanical engineering, medicine, etc. QuadStack first compresses the volumetric data into vertical stacks that are then compressed into a quadtree that identifies and represents the layered structures at the internal nodes. The associated data (color, material, density, etc.) and shape of these layer structures are decoupled and encoded independently, leading to high compression rates (4x to 45x) of the original voxel model memory footprint in our experiments). We also introduce an algorithm for value retrieving from the QuadStack representation and we show that the access has logarithmic complexity. Because of the fast access, QuadStack is suitable for efficient data representation and direct rendering and we show that our GPU implementation performs comparable in speed with the state-of-the-art algorithms (18-79 MRays/s in our implementation), while maintaining a significantly smaller memory footprint
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Visualization and Computer Graphics
ISSN
1077-2626
e-ISSN
1941-0506
Svazek periodika
27
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
3733-3744
Kód UT WoS článku
000679532000010
EID výsledku v databázi Scopus
2-s2.0-85111772911