Change detection using weighted features for image-based localization
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00344049" target="_blank" >RIV/68407700:21230/21:00344049 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21730/21:00344049
Výsledek na webu
<a href="https://doi.org/10.1016/j.robot.2020.103676" target="_blank" >https://doi.org/10.1016/j.robot.2020.103676</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.robot.2020.103676" target="_blank" >10.1016/j.robot.2020.103676</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Change detection using weighted features for image-based localization
Popis výsledku v původním jazyce
Autonomous mobile robots are becoming increasingly important in many industrial and domesticenvironments.Dealingwithunforeseensituationsisadifficultproblemthatmustbetackledtoachievelong-term robot autonomy. In vision-based localization and navigation methods, one of the majorissues is the scene dynamics. The autonomous operation of the robot may become unreliable if thechanges occurring in dynamic environments are not detected and managed. Moving chairs, openingand closing doors or windows, replacing objects and other changes make many conventional methodsfail. To deal with these challenges, we present a novel method for change detection based on weightedlocal visual features. The core idea of the algorithm is to distinguish the valuable information in stableregions of the scene from the potentially misleading information in the regions that are changing. Weevaluate the change detection algorithm in a visual localization framework based on feature matchingby performing a series of long-term localization experiments in various real-world environments. Theresults show that the change detection method yields an improvement in the localization accuracy,compared to the baseline method without change detection. In addition, an experimental evaluationon a public long-term localization data set with more than 10000 images reveals that the proposedmethod outperforms two alternative localization methods on images recorded several months afterthe initial mapping
Název v anglickém jazyce
Change detection using weighted features for image-based localization
Popis výsledku anglicky
Autonomous mobile robots are becoming increasingly important in many industrial and domesticenvironments.Dealingwithunforeseensituationsisadifficultproblemthatmustbetackledtoachievelong-term robot autonomy. In vision-based localization and navigation methods, one of the majorissues is the scene dynamics. The autonomous operation of the robot may become unreliable if thechanges occurring in dynamic environments are not detected and managed. Moving chairs, openingand closing doors or windows, replacing objects and other changes make many conventional methodsfail. To deal with these challenges, we present a novel method for change detection based on weightedlocal visual features. The core idea of the algorithm is to distinguish the valuable information in stableregions of the scene from the potentially misleading information in the regions that are changing. Weevaluate the change detection algorithm in a visual localization framework based on feature matchingby performing a series of long-term localization experiments in various real-world environments. Theresults show that the change detection method yields an improvement in the localization accuracy,compared to the baseline method without change detection. In addition, an experimental evaluationon a public long-term localization data set with more than 10000 images reveals that the proposedmethod outperforms two alternative localization methods on images recorded several months afterthe initial mapping
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20204 - Robotics and automatic control
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000470" target="_blank" >EF15_003/0000470: Robotika pro Průmysl 4.0</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Robotics and Autonomous Systems
ISSN
0921-8890
e-ISSN
1872-793X
Svazek periodika
135
Číslo periodika v rámci svazku
January
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
—
Kód UT WoS článku
000595253700003
EID výsledku v databázi Scopus
2-s2.0-85095916049