Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Change detection using weighted features for image-based localization

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00344049" target="_blank" >RIV/68407700:21230/21:00344049 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68407700:21730/21:00344049

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.robot.2020.103676" target="_blank" >https://doi.org/10.1016/j.robot.2020.103676</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.robot.2020.103676" target="_blank" >10.1016/j.robot.2020.103676</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Change detection using weighted features for image-based localization

  • Popis výsledku v původním jazyce

    Autonomous mobile robots are becoming increasingly important in many industrial and domesticenvironments.Dealingwithunforeseensituationsisadifficultproblemthatmustbetackledtoachievelong-term robot autonomy. In vision-based localization and navigation methods, one of the majorissues is the scene dynamics. The autonomous operation of the robot may become unreliable if thechanges occurring in dynamic environments are not detected and managed. Moving chairs, openingand closing doors or windows, replacing objects and other changes make many conventional methodsfail. To deal with these challenges, we present a novel method for change detection based on weightedlocal visual features. The core idea of the algorithm is to distinguish the valuable information in stableregions of the scene from the potentially misleading information in the regions that are changing. Weevaluate the change detection algorithm in a visual localization framework based on feature matchingby performing a series of long-term localization experiments in various real-world environments. Theresults show that the change detection method yields an improvement in the localization accuracy,compared to the baseline method without change detection. In addition, an experimental evaluationon a public long-term localization data set with more than 10000 images reveals that the proposedmethod outperforms two alternative localization methods on images recorded several months afterthe initial mapping

  • Název v anglickém jazyce

    Change detection using weighted features for image-based localization

  • Popis výsledku anglicky

    Autonomous mobile robots are becoming increasingly important in many industrial and domesticenvironments.Dealingwithunforeseensituationsisadifficultproblemthatmustbetackledtoachievelong-term robot autonomy. In vision-based localization and navigation methods, one of the majorissues is the scene dynamics. The autonomous operation of the robot may become unreliable if thechanges occurring in dynamic environments are not detected and managed. Moving chairs, openingand closing doors or windows, replacing objects and other changes make many conventional methodsfail. To deal with these challenges, we present a novel method for change detection based on weightedlocal visual features. The core idea of the algorithm is to distinguish the valuable information in stableregions of the scene from the potentially misleading information in the regions that are changing. Weevaluate the change detection algorithm in a visual localization framework based on feature matchingby performing a series of long-term localization experiments in various real-world environments. Theresults show that the change detection method yields an improvement in the localization accuracy,compared to the baseline method without change detection. In addition, an experimental evaluationon a public long-term localization data set with more than 10000 images reveals that the proposedmethod outperforms two alternative localization methods on images recorded several months afterthe initial mapping

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20204 - Robotics and automatic control

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF15_003%2F0000470" target="_blank" >EF15_003/0000470: Robotika pro Průmysl 4.0</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Robotics and Autonomous Systems

  • ISSN

    0921-8890

  • e-ISSN

    1872-793X

  • Svazek periodika

    135

  • Číslo periodika v rámci svazku

    January

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    14

  • Strana od-do

  • Kód UT WoS článku

    000595253700003

  • EID výsledku v databázi Scopus

    2-s2.0-85095916049