Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Trajectory Planning of Quadrotor Systems for Various Objective Functions

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00348531" target="_blank" >RIV/68407700:21230/21:00348531 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1017/S0263574720000247" target="_blank" >https://doi.org/10.1017/S0263574720000247</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1017/S0263574720000247" target="_blank" >10.1017/S0263574720000247</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Trajectory Planning of Quadrotor Systems for Various Objective Functions

  • Popis výsledku v původním jazyce

    Quadrotors are unmanned aerial vehicles with many potential applications ranging from mapping to supporting rescue operations. A key feature required for the use of these vehicles under complex conditions is a technique to analytically solve the problem of trajectory planning. Hence, this paper presents a heuristic approach for optimal path planning that the optimization strategy is based on the indirect solution of the open-loop optimal control problem. Firstly, an adequate dynamic system modeling is considered with respect to a configuration of a commercial quadrotor helicopter. The model predicts the effect of the thrust and torques induced by the four propellers on the quadrotor motion. Quadcopter dynamics is described by differential equations that have been derived by using the Newton–Euler method. Then, a path planning algorithm is developed to find the optimal trajec- tories that meet various objective functions, such as fuel efficiency, and guarantee the flight stability and high-speed operation. Typically, the necessary condition of optimality for a constrained opti- mal control problem is formulated as a standard form of a two-point boundary-value problem using Pontryagin’s minimum principle. One advantage of the proposed method can solve a wide range of optimal maneuvers for arbitrary initial and final states relevant to every considered cost function. In order to verify the effectiveness of the presented algorithm, several simulation and experiment stud- ies are carried out for finding the optimal path between two points with different objective functions by using MATLAB software. The results clearly show the effect of the proposed approach on the quadrotor systems.

  • Název v anglickém jazyce

    Trajectory Planning of Quadrotor Systems for Various Objective Functions

  • Popis výsledku anglicky

    Quadrotors are unmanned aerial vehicles with many potential applications ranging from mapping to supporting rescue operations. A key feature required for the use of these vehicles under complex conditions is a technique to analytically solve the problem of trajectory planning. Hence, this paper presents a heuristic approach for optimal path planning that the optimization strategy is based on the indirect solution of the open-loop optimal control problem. Firstly, an adequate dynamic system modeling is considered with respect to a configuration of a commercial quadrotor helicopter. The model predicts the effect of the thrust and torques induced by the four propellers on the quadrotor motion. Quadcopter dynamics is described by differential equations that have been derived by using the Newton–Euler method. Then, a path planning algorithm is developed to find the optimal trajec- tories that meet various objective functions, such as fuel efficiency, and guarantee the flight stability and high-speed operation. Typically, the necessary condition of optimality for a constrained opti- mal control problem is formulated as a standard form of a two-point boundary-value problem using Pontryagin’s minimum principle. One advantage of the proposed method can solve a wide range of optimal maneuvers for arbitrary initial and final states relevant to every considered cost function. In order to verify the effectiveness of the presented algorithm, several simulation and experiment stud- ies are carried out for finding the optimal path between two points with different objective functions by using MATLAB software. The results clearly show the effect of the proposed approach on the quadrotor systems.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GJ17-16900Y" target="_blank" >GJ17-16900Y: Stabilizace a řízení týmů vzájemně lokalizovaných autonomních helikoptér letících oblastmi s velkým výskytem překážek</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Robotica

  • ISSN

    0263-5747

  • e-ISSN

    1469-8668

  • Svazek periodika

    39

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    16

  • Strana od-do

    137-152

  • Kód UT WoS článku

    000601240200010

  • EID výsledku v databázi Scopus

    2-s2.0-85085742502