Insight into high temperature performance of magnetron sputtered Si-Ta-C-(N) coatings with an ion-implanted interlayer
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00348763" target="_blank" >RIV/68407700:21230/21:00348763 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.apsusc.2020.148526" target="_blank" >https://doi.org/10.1016/j.apsusc.2020.148526</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.apsusc.2020.148526" target="_blank" >10.1016/j.apsusc.2020.148526</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Insight into high temperature performance of magnetron sputtered Si-Ta-C-(N) coatings with an ion-implanted interlayer
Popis výsledku v původním jazyce
Challenges related to the application of wear resistant coatings at high temperatures require the development of novel materials with an exceptional combination of mechanical, chemical and tribological properties. The present paper is focused on understanding of relationships between structure, composition and high-temperature performance of the Si-Ta-C-(N) coatings. The coatings were produced using combined magnetron sputtering (MS) and ion implantation (CMSII) technique. It was found that ion implanted coatings demonstrated better thermal shock resistance compared to MS Si Ta C (N) coatings. The Si-Ta-C-(N) coatings revealed a nanocomposite structure consisting of 2-3 nm fcc TaC(N) grains and amorphous a-Si and a-SiC(N) phases. The composition and structure of amorphous matrix and nanocrystallites strongly affected tribological performance of the Si-Ta-C-(N) coatings. The N-doped coatings exhibited exceptionally good tribological performance due to a higher ductility of N-rich amorphous a-SiCN and a-SiNx matrix, and fcc Ta(C,N)-based crystallites compared with the a-Si + a-SiC, and fcc TaC-based phases in N-free coating. The Si-Ta-C-(N) coatings easily withstood oxidation annealing at 800 degrees C due to the formation of a 200 nm protective TaSiOx amorphous layer. Oxidation annealings revealed that under thin protective TaSiOx layer crystalline components of coatings did not change when Si and C from the amorphous matrix started to diffuse towards the substrate at 800 degrees C but even after redistribution of elements and formation of oxide scale the coatings demonstrated reasonably high hardness - 13-16 GPa. Triboactivated formation of TaSiOx fibers which could slide/roll against the same TaSiOx tribolayer during high-temperature tribotests resulted in low coefficient of friction values (0.23 at 800 degrees C) and absence of wear.
Název v anglickém jazyce
Insight into high temperature performance of magnetron sputtered Si-Ta-C-(N) coatings with an ion-implanted interlayer
Popis výsledku anglicky
Challenges related to the application of wear resistant coatings at high temperatures require the development of novel materials with an exceptional combination of mechanical, chemical and tribological properties. The present paper is focused on understanding of relationships between structure, composition and high-temperature performance of the Si-Ta-C-(N) coatings. The coatings were produced using combined magnetron sputtering (MS) and ion implantation (CMSII) technique. It was found that ion implanted coatings demonstrated better thermal shock resistance compared to MS Si Ta C (N) coatings. The Si-Ta-C-(N) coatings revealed a nanocomposite structure consisting of 2-3 nm fcc TaC(N) grains and amorphous a-Si and a-SiC(N) phases. The composition and structure of amorphous matrix and nanocrystallites strongly affected tribological performance of the Si-Ta-C-(N) coatings. The N-doped coatings exhibited exceptionally good tribological performance due to a higher ductility of N-rich amorphous a-SiCN and a-SiNx matrix, and fcc Ta(C,N)-based crystallites compared with the a-Si + a-SiC, and fcc TaC-based phases in N-free coating. The Si-Ta-C-(N) coatings easily withstood oxidation annealing at 800 degrees C due to the formation of a 200 nm protective TaSiOx amorphous layer. Oxidation annealings revealed that under thin protective TaSiOx layer crystalline components of coatings did not change when Si and C from the amorphous matrix started to diffuse towards the substrate at 800 degrees C but even after redistribution of elements and formation of oxide scale the coatings demonstrated reasonably high hardness - 13-16 GPa. Triboactivated formation of TaSiOx fibers which could slide/roll against the same TaSiOx tribolayer during high-temperature tribotests resulted in low coefficient of friction values (0.23 at 800 degrees C) and absence of wear.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20506 - Coating and films
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_026%2F0008396" target="_blank" >EF16_026/0008396: Nové nanostruktury pro inženýrské aplikace umožněné kombinací moderních technologií a pokročilých simulací</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Surface Science
ISSN
0169-4332
e-ISSN
1873-5584
Svazek periodika
541
Číslo periodika v rámci svazku
March
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
11
Strana od-do
—
Kód UT WoS článku
000608509400005
EID výsledku v databázi Scopus
2-s2.0-85097074552