Custom-Design of FDR Encodings: The Case of Red-Black Planning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00350204" target="_blank" >RIV/68407700:21230/21:00350204 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.24963/ijcai.2021/558" target="_blank" >https://doi.org/10.24963/ijcai.2021/558</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.24963/ijcai.2021/558" target="_blank" >10.24963/ijcai.2021/558</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Custom-Design of FDR Encodings: The Case of Red-Black Planning
Popis výsledku v původním jazyce
Classical planning tasks are commonly described in PDDL, while most planning systems operate on a grounded finite-domain representation (FDR). The translation of PDDL into FDR is complex and has a lot of choice points---it involves identifying so called mutex groups---but most systems rely on the translator that comes with Fast Downward. Yet the translation choice points can strongly impact performance. Prior work has considered optimizing FDR encodings in terms of the number of variables produced. Here we go one step further by proposing to custom-design FDR encodings, optimizing the encoding to suit particular planning techniques. We develop such a custom design here for red-black planning, a partial delete relaxation technique. The FDR encoding affects the causal graph and the domain transition graph structures, which govern the tractable fragment of red-black planning and hence affects the respective heuristic function. We develop integer linear programming techniques optimizing the scope of that fragment in the resulting FDR encoding. We empirically show that the performance of red-black planning can be improved through such FDR custom design.
Název v anglickém jazyce
Custom-Design of FDR Encodings: The Case of Red-Black Planning
Popis výsledku anglicky
Classical planning tasks are commonly described in PDDL, while most planning systems operate on a grounded finite-domain representation (FDR). The translation of PDDL into FDR is complex and has a lot of choice points---it involves identifying so called mutex groups---but most systems rely on the translator that comes with Fast Downward. Yet the translation choice points can strongly impact performance. Prior work has considered optimizing FDR encodings in terms of the number of variables produced. Here we go one step further by proposing to custom-design FDR encodings, optimizing the encoding to suit particular planning techniques. We develop such a custom design here for red-black planning, a partial delete relaxation technique. The FDR encoding affects the causal graph and the domain transition graph structures, which govern the tractable fragment of red-black planning and hence affects the respective heuristic function. We develop integer linear programming techniques optimizing the scope of that fragment in the resulting FDR encoding. We empirically show that the performance of red-black planning can be improved through such FDR custom design.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence
ISBN
978-0-9992411-9-6
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
4054-4061
Název nakladatele
International Joint Conferences on Artificial Intelligence Organization
Místo vydání
—
Místo konání akce
Montreal
Datum konání akce
19. 8. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—