Expressiveness of Graph Neural Networks in Planning Domains
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00377976" target="_blank" >RIV/68407700:21230/24:00377976 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1609/icaps.v34i1.31486" target="_blank" >https://doi.org/10.1609/icaps.v34i1.31486</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1609/icaps.v34i1.31486" target="_blank" >10.1609/icaps.v34i1.31486</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Expressiveness of Graph Neural Networks in Planning Domains
Popis výsledku v původním jazyce
Graph Neural Networks (GNNs) have become the standard method of choice for learning with structured data, demonstrating particular promise in classical planning. Their inherent invariance under symmetries of the input graphs endows them with superior generalization capabilities, compared to their symmetry-oblivious counterparts. However, this comes at the cost of limited expressive power. Particularly, GNNs cannot distinguish between graphs that satisfy identical sentences of C2 logic. To leverage GNNs for learning policies in PDDL domains, one needs to encode the contextual representation of the planning states as graphs. The expressiveness of this encoding, coupled with a specific GNN architecture, then hinges on the absence of indistinguishable states necessitating distinct actions. This paper provides a comprehensive theoretical and statistical exploration of such situations in PDDL domains across diverse natural encoding schemes and GNN models.
Název v anglickém jazyce
Expressiveness of Graph Neural Networks in Planning Domains
Popis výsledku anglicky
Graph Neural Networks (GNNs) have become the standard method of choice for learning with structured data, demonstrating particular promise in classical planning. Their inherent invariance under symmetries of the input graphs endows them with superior generalization capabilities, compared to their symmetry-oblivious counterparts. However, this comes at the cost of limited expressive power. Particularly, GNNs cannot distinguish between graphs that satisfy identical sentences of C2 logic. To leverage GNNs for learning policies in PDDL domains, one needs to encode the contextual representation of the planning states as graphs. The expressiveness of this encoding, coupled with a specific GNN architecture, then hinges on the absence of indistinguishable states necessitating distinct actions. This paper provides a comprehensive theoretical and statistical exploration of such situations in PDDL domains across diverse natural encoding schemes and GNN models.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
R - Projekt Ramcoveho programu EK
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the Thirty-Fourth International Conference on Automated Planning and Scheduling
ISBN
978-1-57735-889-3
ISSN
2334-0835
e-ISSN
2334-0843
Počet stran výsledku
9
Strana od-do
281-289
Název nakladatele
AAAI Press
Místo vydání
Menlo Park, California
Místo konání akce
Banff
Datum konání akce
1. 6. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—