On the acoustic effects of sonic crystals in heat exchanger arrangements
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00350537" target="_blank" >RIV/68407700:21230/21:00350537 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.apacoust.2021.108253" target="_blank" >https://doi.org/10.1016/j.apacoust.2021.108253</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.apacoust.2021.108253" target="_blank" >10.1016/j.apacoust.2021.108253</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On the acoustic effects of sonic crystals in heat exchanger arrangements
Popis výsledku v původním jazyce
Heat exchangers can be found in a large number of technical systems and installations. They are usually operated in combination with other machines, such as axial fans, in order to remove or supply heat to a system. The heat exchanger can influence the existing flow field and thus lead to increased noise emission from fans located downstream of the heat exchanger. This can be observed, for example, in air conditioning units in which axial fans operate in combination with heat exchangers. Even though this mechanism is known, it is not yet understood how the heat exchanger affects the sound propagation of the sound produced by the downstream machine. For example, the heat exchanger may lead to a change in directional characteristics or specific frequencies may be attenuated. In order to better understand the interaction of the heat exchanger with the sound field, sound power measurements were carried out on various heat exchangers and the sound propagation was simulated numerically. It was shown that the sound attenuation due to the interaction with the periodic tube array is detectable in heat exchangers and that this leads to a sound reduction at the Bragg frequency. Based on its filling factor, the heat exchanger can reduce the sound propagation in certain frequency bands by up to 10 dB if the geometrirical properties are selected suitably. The simulations of a single unit cell confirm in very good agreement with the experimental results. This allows the conclusion that the approach presented in this paper is a cost-effective way to model acoustic effects of heat exchangers. Furthermore, sound attenuation effects by the heat exchanger were caused by thermoviscous effects on the cooling fins and dimensions of the heat exchanger housing.
Název v anglickém jazyce
On the acoustic effects of sonic crystals in heat exchanger arrangements
Popis výsledku anglicky
Heat exchangers can be found in a large number of technical systems and installations. They are usually operated in combination with other machines, such as axial fans, in order to remove or supply heat to a system. The heat exchanger can influence the existing flow field and thus lead to increased noise emission from fans located downstream of the heat exchanger. This can be observed, for example, in air conditioning units in which axial fans operate in combination with heat exchangers. Even though this mechanism is known, it is not yet understood how the heat exchanger affects the sound propagation of the sound produced by the downstream machine. For example, the heat exchanger may lead to a change in directional characteristics or specific frequencies may be attenuated. In order to better understand the interaction of the heat exchanger with the sound field, sound power measurements were carried out on various heat exchangers and the sound propagation was simulated numerically. It was shown that the sound attenuation due to the interaction with the periodic tube array is detectable in heat exchangers and that this leads to a sound reduction at the Bragg frequency. Based on its filling factor, the heat exchanger can reduce the sound propagation in certain frequency bands by up to 10 dB if the geometrirical properties are selected suitably. The simulations of a single unit cell confirm in very good agreement with the experimental results. This allows the conclusion that the approach presented in this paper is a cost-effective way to model acoustic effects of heat exchangers. Furthermore, sound attenuation effects by the heat exchanger were caused by thermoviscous effects on the cooling fins and dimensions of the heat exchanger housing.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10307 - Acoustics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-24954S" target="_blank" >GA18-24954S: Šíření akustických vln fononickými materiály a strukturami</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Acoustics
ISSN
0003-682X
e-ISSN
1872-910X
Svazek periodika
182
Číslo periodika v rámci svazku
November
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
17
Strana od-do
—
Kód UT WoS článku
000687528600038
EID výsledku v databázi Scopus
2-s2.0-85109087969