Robot in the Mirror: Toward an Embodied Computational Model of Mirror Self-Recognition
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00350803" target="_blank" >RIV/68407700:21230/21:00350803 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s13218-020-00701-7" target="_blank" >https://doi.org/10.1007/s13218-020-00701-7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s13218-020-00701-7" target="_blank" >10.1007/s13218-020-00701-7</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Robot in the Mirror: Toward an Embodied Computational Model of Mirror Self-Recognition
Popis výsledku v původním jazyce
Self-recognition or self-awareness is a capacity attributed typically only to humans and few other species. The definitions of these concepts vary and little is known about the mechanisms behind them. However, there is a Turing test-like benchmark: the mirror self-recognition, which consists in covertly putting a mark on the face of the tested subject, placing her in front of a mirror, and observing the reactions. In this work, first, we provide a mechanistic decomposition, or process model, of what components are required to pass this test. Based on these, we provide suggestions for empirical research. In particular, in our view, the way the infants or animals reach for the mark should be studied in detail. Second, we develop a model to enable the humanoid robot Nao to pass the test. The core of our technical contribution is learning the appearance representation and visual novelty detection by means of learning the generative model of the face with deep auto-encoders and exploiting the prediction error. The mark is identified as a salient region on the face and reaching action is triggered, relying on a previously learned mapping to arm joint angles. The architecture is tested on two robots with completely different face.
Název v anglickém jazyce
Robot in the Mirror: Toward an Embodied Computational Model of Mirror Self-Recognition
Popis výsledku anglicky
Self-recognition or self-awareness is a capacity attributed typically only to humans and few other species. The definitions of these concepts vary and little is known about the mechanisms behind them. However, there is a Turing test-like benchmark: the mirror self-recognition, which consists in covertly putting a mark on the face of the tested subject, placing her in front of a mirror, and observing the reactions. In this work, first, we provide a mechanistic decomposition, or process model, of what components are required to pass this test. Based on these, we provide suggestions for empirical research. In particular, in our view, the way the infants or animals reach for the mark should be studied in detail. Second, we develop a model to enable the humanoid robot Nao to pass the test. The core of our technical contribution is learning the appearance representation and visual novelty detection by means of learning the generative model of the face with deep auto-encoders and exploiting the prediction error. The mark is identified as a salient region on the face and reaching action is triggered, relying on a previously learned mapping to arm joint angles. The architecture is tested on two robots with completely different face.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
50103 - Cognitive sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ17-15697Y" target="_blank" >GJ17-15697Y: Automatická kalibrace robotů a bezpečná fyzická interakce s člověkem inspirovaná reprezentacemi těla v mozku primátů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
KI - Künstliche Intelligenz, German Journal on Artificial Intelligence
ISSN
0933-1875
e-ISSN
0933-1875
Svazek periodika
35
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
15
Strana od-do
37-51
Kód UT WoS článku
000609092100001
EID výsledku v databázi Scopus
2-s2.0-85099667995