Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

The two-sorted algebraic theory of states, and the universal states of MV-algebras

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00350826" target="_blank" >RIV/68407700:21230/21:00350826 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.jpaa.2021.106771" target="_blank" >https://doi.org/10.1016/j.jpaa.2021.106771</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jpaa.2021.106771" target="_blank" >10.1016/j.jpaa.2021.106771</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    The two-sorted algebraic theory of states, and the universal states of MV-algebras

  • Popis výsledku v původním jazyce

    States of unital Abelian lattice-groups provide an abstraction of expected-value operators. A well-known theorem due to Mundici asserts that the category of unital lattice-groups is equivalent to the algebraic category of MV-algebras, and their homomorphisms. Through this equivalence, states of lattice-groups correspond to certain [0,1]-valued functionals on MV-algebras, which are also known as states. In this paper we allow states to take values in any unital lattice-group (or in any MV-algebra) rather than just in R (or just in [0,1], respectively). We introduce a two-sorted algebraic theory whose models are precisely states of MV-algebras. We extend Mundici's equivalence to one between the category of MV-algebras with states as morphisms, and the category of unital Abelian lattice-groups with, again, states as morphisms. Thus, the models of our two-sorted theory may also be regarded as states between unital Abelian lattice-groups. As our first main result, we derive the existence of the universal state of any MV-algebra from the existence of free algebras in multi-sorted algebraic categories. In the remaining part of the paper, we seek concrete representations of such universal states. We begin by clarifying the relationship of universal states with the theory of affine representations: the universal state A->B of the MV-algebra A coincides with a certain modification of Choquet's affine representation (of the lattice-group corresponding to A) if, and only if, B is semisimple. Locally finite MV-algebras are semisimple, and Boolean algebras are instances of locally finite MV-algebras. Our second main result is then that the universal state of any locally finite MV-algebra has semisimple codomain, and can thus be described through our adaptation of Choquet's affine representation.

  • Název v anglickém jazyce

    The two-sorted algebraic theory of states, and the universal states of MV-algebras

  • Popis výsledku anglicky

    States of unital Abelian lattice-groups provide an abstraction of expected-value operators. A well-known theorem due to Mundici asserts that the category of unital lattice-groups is equivalent to the algebraic category of MV-algebras, and their homomorphisms. Through this equivalence, states of lattice-groups correspond to certain [0,1]-valued functionals on MV-algebras, which are also known as states. In this paper we allow states to take values in any unital lattice-group (or in any MV-algebra) rather than just in R (or just in [0,1], respectively). We introduce a two-sorted algebraic theory whose models are precisely states of MV-algebras. We extend Mundici's equivalence to one between the category of MV-algebras with states as morphisms, and the category of unital Abelian lattice-groups with, again, states as morphisms. Thus, the models of our two-sorted theory may also be regarded as states between unital Abelian lattice-groups. As our first main result, we derive the existence of the universal state of any MV-algebra from the existence of free algebras in multi-sorted algebraic categories. In the remaining part of the paper, we seek concrete representations of such universal states. We begin by clarifying the relationship of universal states with the theory of affine representations: the universal state A->B of the MV-algebra A coincides with a certain modification of Choquet's affine representation (of the lattice-group corresponding to A) if, and only if, B is semisimple. Locally finite MV-algebras are semisimple, and Boolean algebras are instances of locally finite MV-algebras. Our second main result is then that the universal state of any locally finite MV-algebra has semisimple codomain, and can thus be described through our adaptation of Choquet's affine representation.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Výzkumné centrum informatiky</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Pure and Applied Algebra

  • ISSN

    0022-4049

  • e-ISSN

    1873-1376

  • Svazek periodika

    225

  • Číslo periodika v rámci svazku

    12

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    21

  • Strana od-do

  • Kód UT WoS článku

    000668926000024

  • EID výsledku v databázi Scopus

    2-s2.0-85104705166