The MRS UAV System: Pushing the Frontiers of Reproducible Research, Real-world Deployment, and Education with Autonomous Unmanned Aerial Vehicles
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00350906" target="_blank" >RIV/68407700:21230/21:00350906 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s10846-021-01383-5" target="_blank" >https://doi.org/10.1007/s10846-021-01383-5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10846-021-01383-5" target="_blank" >10.1007/s10846-021-01383-5</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The MRS UAV System: Pushing the Frontiers of Reproducible Research, Real-world Deployment, and Education with Autonomous Unmanned Aerial Vehicles
Popis výsledku v původním jazyce
We present a multirotor Unmanned Aerial Vehicle (UAV) control and estimation system for supporting replicable research through realistic simulations and real-world experiments. We propose a unique multi-frame localization paradigm for estimating the states of a UAV in various frames of reference using multiple sensors simultaneously. The system enables complex missions in GNSS and GNSS-denied environments, including outdoor-indoor transitions and the execution of redundant estimators for backing up unreliable localization sources. Two feedback control designs are presented: one for precise and aggressive maneuvers, and the other for stable and smooth flight with a noisy state estimate. The proposed control and estimation pipeline are constructed without using the Euler/Tait-Bryan angle representation of orientation in 3D. Instead, we rely on rotation matrices and a novel heading-based convention to represent the one free rotational degree-of-freedom in 3D of a standard multirotor helicopter. We provide an actively maintained and well-documented open-source implementation, including realistic simulation of UAV, sensors, and localization systems. The proposed system is the product of years of applied research on multi-robot systems, aerial swarms, aerial manipulation, motion planning, and remote sensing. All our results have been supported by real-world system deployment that subsequently shaped the system into the form presented here. In addition, the system was utilized during the participation of our team from the Czech Technical University in Prague in the prestigious MBZIRC 2017 and 2020 robotics competitions, and also in the DARPA Subterranean challenge. Each time, our team was able to secure top places among the best competitors from all over the world.
Název v anglickém jazyce
The MRS UAV System: Pushing the Frontiers of Reproducible Research, Real-world Deployment, and Education with Autonomous Unmanned Aerial Vehicles
Popis výsledku anglicky
We present a multirotor Unmanned Aerial Vehicle (UAV) control and estimation system for supporting replicable research through realistic simulations and real-world experiments. We propose a unique multi-frame localization paradigm for estimating the states of a UAV in various frames of reference using multiple sensors simultaneously. The system enables complex missions in GNSS and GNSS-denied environments, including outdoor-indoor transitions and the execution of redundant estimators for backing up unreliable localization sources. Two feedback control designs are presented: one for precise and aggressive maneuvers, and the other for stable and smooth flight with a noisy state estimate. The proposed control and estimation pipeline are constructed without using the Euler/Tait-Bryan angle representation of orientation in 3D. Instead, we rely on rotation matrices and a novel heading-based convention to represent the one free rotational degree-of-freedom in 3D of a standard multirotor helicopter. We provide an actively maintained and well-documented open-source implementation, including realistic simulation of UAV, sensors, and localization systems. The proposed system is the product of years of applied research on multi-robot systems, aerial swarms, aerial manipulation, motion planning, and remote sensing. All our results have been supported by real-world system deployment that subsequently shaped the system into the form presented here. In addition, the system was utilized during the participation of our team from the Czech Technical University in Prague in the prestigious MBZIRC 2017 and 2020 robotics competitions, and also in the DARPA Subterranean challenge. Each time, our team was able to secure top places among the best competitors from all over the world.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20204 - Robotics and automatic control
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Intelligent and Robotic Systems
ISSN
0921-0296
e-ISSN
1573-0409
Svazek periodika
102
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
28
Strana od-do
—
Kód UT WoS článku
000762574600002
EID výsledku v databázi Scopus
2-s2.0-85104097471