Decentralized Multi-robot Velocity Estimation for UAVs Enhancing Onboard Camera-based Velocity Measurements
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00360912" target="_blank" >RIV/68407700:21230/22:00360912 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/IROS47612.2022.9981894" target="_blank" >https://doi.org/10.1109/IROS47612.2022.9981894</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/IROS47612.2022.9981894" target="_blank" >10.1109/IROS47612.2022.9981894</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Decentralized Multi-robot Velocity Estimation for UAVs Enhancing Onboard Camera-based Velocity Measurements
Popis výsledku v původním jazyce
Within the field of multi-robot systems, developing systems that rely only on onboard sensing without the use of external infrastructure (e.g. GNSS) has many potential applications. However, relying only on visual-based modalities for localization presents challenges in terms of accuracy and reliability. We introduce a decentralized multi-robot lateral velocity estimation method for Unmanned Aerial Vehicles (UAVs) to improve onboard measurements in case GNSS infrastructure is not available. This method relies on sharing the onboard measurements of neighbors, as well as the estimation of the relative motion of a focal UAV within the swarm, based on observation of coworking robots. The proposed velocity estimation method does not rely on centralized communication to achieve high reliability and scalability within the swarm system. The performance of the state estimation approach has been verified in simulations and real-world experiments. The results have shown that a swarm of UAVs using the proposed velocity estimator can stabilize individual robots when their primary onboard localization source is not reliable enough.
Název v anglickém jazyce
Decentralized Multi-robot Velocity Estimation for UAVs Enhancing Onboard Camera-based Velocity Measurements
Popis výsledku anglicky
Within the field of multi-robot systems, developing systems that rely only on onboard sensing without the use of external infrastructure (e.g. GNSS) has many potential applications. However, relying only on visual-based modalities for localization presents challenges in terms of accuracy and reliability. We introduce a decentralized multi-robot lateral velocity estimation method for Unmanned Aerial Vehicles (UAVs) to improve onboard measurements in case GNSS infrastructure is not available. This method relies on sharing the onboard measurements of neighbors, as well as the estimation of the relative motion of a focal UAV within the swarm, based on observation of coworking robots. The proposed velocity estimation method does not rely on centralized communication to achieve high reliability and scalability within the swarm system. The performance of the state estimation approach has been verified in simulations and real-world experiments. The results have shown that a swarm of UAVs using the proposed velocity estimator can stabilize individual robots when their primary onboard localization source is not reliable enough.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20204 - Robotics and automatic control
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Intelligent Robots and Systems (IROS), 2022 IEEE/RSJ International Conference on
ISBN
978-1-6654-7927-1
ISSN
2153-0866
e-ISSN
2153-0858
Počet stran výsledku
8
Strana od-do
11570-11577
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Kyoto
Datum konání akce
23. 10. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000909405303058