Autonomous Aerial Swarming in GNSS-denied Environments with High Obstacle Density
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00351029" target="_blank" >RIV/68407700:21230/21:00351029 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/ICRA48506.2021.9561284" target="_blank" >https://doi.org/10.1109/ICRA48506.2021.9561284</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICRA48506.2021.9561284" target="_blank" >10.1109/ICRA48506.2021.9561284</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Autonomous Aerial Swarming in GNSS-denied Environments with High Obstacle Density
Popis výsledku v původním jazyce
The compact flocking of relatively localized Un- manned Aerial Vehicles (UAVs) in high obstacle density areas is discussed in this paper. The presented work tackles realistic scenarios in which the environment map is not known apriori and the use of a global localization system and communication infrastructure is difficult due to the presence of obstacles. To achieve flocking in such a constrained environment, we propose a fully decentralized, bio-inspired control law that uses only onboard sensor data for safe flocking through the environment without any communication with other agents. In the proposed approach, each UAV agent uses onboard sensors to self-localize and estimate the relative position of other agents in its local reference frame. The usability and performance of the proposed approach were verified and evaluated using various experiments in a realistic robotic simulator and a natural forest. The pre- sented experiments also validate the utility of onboard relative localization for autonomous multi-UAV applications in the ab- sence of global localization information and communication.
Název v anglickém jazyce
Autonomous Aerial Swarming in GNSS-denied Environments with High Obstacle Density
Popis výsledku anglicky
The compact flocking of relatively localized Un- manned Aerial Vehicles (UAVs) in high obstacle density areas is discussed in this paper. The presented work tackles realistic scenarios in which the environment map is not known apriori and the use of a global localization system and communication infrastructure is difficult due to the presence of obstacles. To achieve flocking in such a constrained environment, we propose a fully decentralized, bio-inspired control law that uses only onboard sensor data for safe flocking through the environment without any communication with other agents. In the proposed approach, each UAV agent uses onboard sensors to self-localize and estimate the relative position of other agents in its local reference frame. The usability and performance of the proposed approach were verified and evaluated using various experiments in a realistic robotic simulator and a natural forest. The pre- sented experiments also validate the utility of onboard relative localization for autonomous multi-UAV applications in the ab- sence of global localization information and communication.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20204 - Robotics and automatic control
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
IEEE International Conference on Robotics and Automation (ICRA)
ISBN
978-1-7281-9077-8
ISSN
1050-4729
e-ISSN
2577-087X
Počet stran výsledku
7
Strana od-do
570-576
Název nakladatele
IEEE Xplore
Místo vydání
—
Místo konání akce
Xi’an
Datum konání akce
30. 5. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000765738800049