Text Summarization of Czech News Articles Using Named Entities
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00351127" target="_blank" >RIV/68407700:21230/21:00351127 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21730/21:00351127
Výsledek na webu
<a href="https://doi.org/10.14712/00326585.012" target="_blank" >https://doi.org/10.14712/00326585.012</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14712/00326585.012" target="_blank" >10.14712/00326585.012</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Text Summarization of Czech News Articles Using Named Entities
Popis výsledku v původním jazyce
The foundation for the research of summarization in the Czech language was laid by the work of Straka et al. (2018). They published the SumeCzech, a large Czech news-based summarization dataset, and proposed several baseline approaches. However, it is clear from the achieved results that there is a large space for improvement. In our work, we focus on the impact of named entities on the summarization of Czech news articles. First, we annotate SumeCzech with named entities. We propose a new metric ROUGENE that measures the overlap of named entities between the true and generated summaries, and we show that it is still challenging for summarization systems to reach a high score in it. We propose an extractive summarization approach Named Entity Density that selects a sentence with the highest ratio between a number of entities and the length of the sentence as the summary of the article. The experiments show that the proposed approach reached results close to the solid baseline in the domain of news articles selecting the first sentence. Moreover, we demonstrate that the selected sentence reflects the style of reports concisely identifying to whom, when, where, and what happened. We propose that such a summary is beneficial in combination with the first sentence of an article in voice applications presenting news articles. We propose two abstractive summarization approaches based on Seq2Seq architecture. The first approach uses the tokens of the article. The second approach has access to the named entity annotations. The experiments show that both approaches exceed state-of-the-art results previously reported by Straka et al. (2018), with the latter achieving slightly better results on SumeCzech’s out-of-domain testing set.
Název v anglickém jazyce
Text Summarization of Czech News Articles Using Named Entities
Popis výsledku anglicky
The foundation for the research of summarization in the Czech language was laid by the work of Straka et al. (2018). They published the SumeCzech, a large Czech news-based summarization dataset, and proposed several baseline approaches. However, it is clear from the achieved results that there is a large space for improvement. In our work, we focus on the impact of named entities on the summarization of Czech news articles. First, we annotate SumeCzech with named entities. We propose a new metric ROUGENE that measures the overlap of named entities between the true and generated summaries, and we show that it is still challenging for summarization systems to reach a high score in it. We propose an extractive summarization approach Named Entity Density that selects a sentence with the highest ratio between a number of entities and the length of the sentence as the summary of the article. The experiments show that the proposed approach reached results close to the solid baseline in the domain of news articles selecting the first sentence. Moreover, we demonstrate that the selected sentence reflects the style of reports concisely identifying to whom, when, where, and what happened. We propose that such a summary is beneficial in combination with the first sentence of an article in voice applications presenting news articles. We propose two abstractive summarization approaches based on Seq2Seq architecture. The first approach uses the tokens of the article. The second approach has access to the named entity annotations. The experiments show that both approaches exceed state-of-the-art results previously reported by Straka et al. (2018), with the latter achieving slightly better results on SumeCzech’s out-of-domain testing set.
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
The Prague Bulletin of Mathematical linguistics
ISSN
0032-6585
e-ISSN
—
Svazek periodika
116
Číslo periodika v rámci svazku
April
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
21
Strana od-do
5-25
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—