Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

FEDS -- Filtered Edit Distance Surrogate

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00351133" target="_blank" >RIV/68407700:21230/21:00351133 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1007/978-3-030-86337-1_12" target="_blank" >https://doi.org/10.1007/978-3-030-86337-1_12</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-86337-1_12" target="_blank" >10.1007/978-3-030-86337-1_12</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    FEDS -- Filtered Edit Distance Surrogate

  • Popis výsledku v původním jazyce

    This paper proposes a procedure to train a scene text recognition model using a robust learned surrogate of edit distance. The proposed method borrows from self-paced learning and filters out the training examples that are hard for the surrogate. The filtering is performed by judging the quality of the approximation, using a ramp function, enabling end-to-end training. Following the literature, the experiments are conducted in a post-tuning setup, where a trained scene text recognition model is tuned using the learned surrogate of edit distance. The efficacy is demonstrated by improvements on various challenging scene text datasets such as IIIT-5K, SVT, ICDAR, SVTP, and CUTE. The proposed method provides an average improvement of 11.2% on total edit distance and an error reduction of 9.5% on accuracy.

  • Název v anglickém jazyce

    FEDS -- Filtered Edit Distance Surrogate

  • Popis výsledku anglicky

    This paper proposes a procedure to train a scene text recognition model using a robust learned surrogate of edit distance. The proposed method borrows from self-paced learning and filters out the training examples that are hard for the surrogate. The filtering is performed by judging the quality of the approximation, using a ramp function, enabling end-to-end training. Following the literature, the experiments are conducted in a post-tuning setup, where a trained scene text recognition model is tuned using the learned surrogate of edit distance. The efficacy is demonstrated by improvements on various challenging scene text datasets such as IIIT-5K, SVT, ICDAR, SVTP, and CUTE. The proposed method provides an average improvement of 11.2% on total edit distance and an error reduction of 9.5% on accuracy.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Výzkumné centrum informatiky</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    ICDAR2021: 16th IAPR International Conference on Document Analysis and Recognition

  • ISBN

    978-3-030-86336-4

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Počet stran výsledku

    16

  • Strana od-do

    171-186

  • Název nakladatele

    Springer International Publishing

  • Místo vydání

    Cham

  • Místo konání akce

    Lausanne

  • Datum konání akce

    5. 9. 2021

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000711880100012