A Quantifiable Stratification Strategy for Tidy-up in Service Robotics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00352482" target="_blank" >RIV/68407700:21230/21:00352482 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/ARSO51874.2021.9542842" target="_blank" >https://doi.org/10.1109/ARSO51874.2021.9542842</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ARSO51874.2021.9542842" target="_blank" >10.1109/ARSO51874.2021.9542842</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Quantifiable Stratification Strategy for Tidy-up in Service Robotics
Popis výsledku v původním jazyce
This paper addresses the problem of tidying up a living room in a messy condition with a service robot (i.e. domestic mobile manipulator). One of the key issues in completing such a task is how to continuously select the object to grasp and take it to the delivery area, especially when the robot works in constrained and partially observable environments. In this paper, we propose a quantifiable stratification method that allows the robot to find feasible action plans according to different configurations of objects-deposits, in order to smoothly deliver the objects to the target deposits. Specifically, it leverages a finite-state machine obeying the principle of Occam's razor (called O- FSM), which is designed to integrate arbitrary user-defined action plans typically ranging from simple to complex. Instead of considering a sophisticated model for the ever-changing objects-deposits configuration in the tidy-up task, we empower the robot to make simple yet effective decisions based on its current faced configuration under a generalized framework. Through scenario planning and simulation experiments with the explicitly designed test cases based on the real robot and the real competition scene, the effectiveness of our method is illustrated.
Název v anglickém jazyce
A Quantifiable Stratification Strategy for Tidy-up in Service Robotics
Popis výsledku anglicky
This paper addresses the problem of tidying up a living room in a messy condition with a service robot (i.e. domestic mobile manipulator). One of the key issues in completing such a task is how to continuously select the object to grasp and take it to the delivery area, especially when the robot works in constrained and partially observable environments. In this paper, we propose a quantifiable stratification method that allows the robot to find feasible action plans according to different configurations of objects-deposits, in order to smoothly deliver the objects to the target deposits. Specifically, it leverages a finite-state machine obeying the principle of Occam's razor (called O- FSM), which is designed to integrate arbitrary user-defined action plans typically ranging from simple to complex. Instead of considering a sophisticated model for the ever-changing objects-deposits configuration in the tidy-up task, we empower the robot to make simple yet effective decisions based on its current faced configuration under a generalized framework. Through scenario planning and simulation experiments with the explicitly designed test cases based on the real robot and the real competition scene, the effectiveness of our method is illustrated.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Výzkumné centrum informatiky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of IEEE Workshop on Advanced Robotics and its Social Impacts
ISBN
978-1-6654-4953-3
ISSN
2162-7576
e-ISSN
2162-7568
Počet stran výsledku
6
Strana od-do
182-187
Název nakladatele
IEEE Xplore
Místo vydání
—
Místo konání akce
Virtual Conference
Datum konání akce
8. 7. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—