A Learning Based Approach for Planning with Safe Actions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F20%3A00347586" target="_blank" >RIV/68407700:21730/20:00347586 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-030-58814-4_7" target="_blank" >https://doi.org/10.1007/978-3-030-58814-4_7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-58814-4_7" target="_blank" >10.1007/978-3-030-58814-4_7</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Learning Based Approach for Planning with Safe Actions
Popis výsledku v původním jazyce
Given a configuration involving some objects in an environment, the planning problem, considered in this paper, is to find a plan that rearranges these objects so as to place a new object. The challenging aspect here involves deciding when an object can be placed on top of another object. Here only defining standard planning operators would not suffice. For instance, using these operators we can come up with actions that may be performed at a state but it should not be performed. So we introduce the notion of safe actions whose outcomes are consistent with the laws of physics, commonsense, and common practice. A safe action can be performed if a robot performing the action knows the knowledge of the situation. We developed a knowledge engine using a supervised learning technique. However, unlike the common task of learning functions, our approach is to learn predicates--that evaluate to binary values. By learning such a predicate a robot would be able to decide whether or not an object A can be placed on top of another object B. We give a method to handle new objects for which the predicates have not been learned. We suggest a nondeterministic planning algorithm to synthesize plans that contain only safe actions. Experimental results show the efficacy of our approach.
Název v anglickém jazyce
A Learning Based Approach for Planning with Safe Actions
Popis výsledku anglicky
Given a configuration involving some objects in an environment, the planning problem, considered in this paper, is to find a plan that rearranges these objects so as to place a new object. The challenging aspect here involves deciding when an object can be placed on top of another object. Here only defining standard planning operators would not suffice. For instance, using these operators we can come up with actions that may be performed at a state but it should not be performed. So we introduce the notion of safe actions whose outcomes are consistent with the laws of physics, commonsense, and common practice. A safe action can be performed if a robot performing the action knows the knowledge of the situation. We developed a knowledge engine using a supervised learning technique. However, unlike the common task of learning functions, our approach is to learn predicates--that evaluate to binary values. By learning such a predicate a robot would be able to decide whether or not an object A can be placed on top of another object B. We give a method to handle new objects for which the predicates have not been learned. We suggest a nondeterministic planning algorithm to synthesize plans that contain only safe actions. Experimental results show the efficacy of our approach.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Computational Science and Its Applications – ICCSA 2020
ISBN
978-3-030-58813-7
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
13
Strana od-do
93-105
Název nakladatele
Springer Science+Business Media
Místo vydání
Berlin
Místo konání akce
Cagliari
Datum konání akce
1. 7. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000719714800007