Efficient Initial Pose-Graph Generation for Global SfM
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00353212" target="_blank" >RIV/68407700:21230/21:00353212 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/CVPR46437.2021.01431" target="_blank" >https://doi.org/10.1109/CVPR46437.2021.01431</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CVPR46437.2021.01431" target="_blank" >10.1109/CVPR46437.2021.01431</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Efficient Initial Pose-Graph Generation for Global SfM
Popis výsledku v původním jazyce
We propose ways to speed up the initial pose-graph generation for global Structure-from-Motion algorithms. To avoid forming tentative point correspondences by FLANN and geometric verification by RANSAC, which are the most time-consuming steps of the pose-graph creation, we propose two new methods -- built on the fact that image pairs usually are matched consecutively. Thus, candidate relative poses can be recovered from paths in the partly-built pose-graph. We propose a heuristic for the A* traversal, considering global similarity of images and the quality of the pose-graph edges. Given a relative pose from a path, descriptor-based feature matching is made "light-weight" by exploiting the known epipolar geometry. To speed up PROSAC-based sampling when RANSAC is applied, we propose a third method to order the correspondences by their inlier probabilities from previous estimations. The algorithms are tested on 402130 image pairs from the 1DSfM dataset and they speed up the feature matching 17 times and pose estimation 5 times. The source code will be made public.
Název v anglickém jazyce
Efficient Initial Pose-Graph Generation for Global SfM
Popis výsledku anglicky
We propose ways to speed up the initial pose-graph generation for global Structure-from-Motion algorithms. To avoid forming tentative point correspondences by FLANN and geometric verification by RANSAC, which are the most time-consuming steps of the pose-graph creation, we propose two new methods -- built on the fact that image pairs usually are matched consecutively. Thus, candidate relative poses can be recovered from paths in the partly-built pose-graph. We propose a heuristic for the A* traversal, considering global similarity of images and the quality of the pose-graph edges. Given a relative pose from a path, descriptor-based feature matching is made "light-weight" by exploiting the known epipolar geometry. To speed up PROSAC-based sampling when RANSAC is applied, we propose a third method to order the correspondences by their inlier probabilities from previous estimations. The algorithms are tested on 402130 image pairs from the 1DSfM dataset and they speed up the feature matching 17 times and pose estimation 5 times. The source code will be made public.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Výzkumné centrum informatiky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
ISBN
978-1-6654-4509-2
ISSN
1063-6919
e-ISSN
2575-7075
Počet stran výsledku
10
Strana od-do
14541-14550
Název nakladatele
IEEE Computer Society
Místo vydání
USA
Místo konání akce
Nashville
Datum konání akce
20. 6. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000742075004074