Pose-graph via Adaptive Image Re-ordering
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F22%3A00361443" target="_blank" >RIV/68407700:21110/22:00361443 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21230/22:00361443
Výsledek na webu
<a href="https://bmvc2022.mpi-inf.mpg.de/0127.pdf" target="_blank" >https://bmvc2022.mpi-inf.mpg.de/0127.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Pose-graph via Adaptive Image Re-ordering
Popis výsledku v původním jazyce
We introduce novel methods that speed up the pose-graph generation for global Structure-from-Motion algorithms. We replace the widely used ``accept-or-reject'' strategy for image pairs, where often thousands of RANSAC iterations are wasted on pairs with low inlier ratio or on non-matchable ones. The new algorithm exploits the fact that every unsuccessful RANSAC iteration reduces the probability of an image pair being matchable, i.e., it reduces its inlier ratio expectation. The method always selects the most promising pair for matching. While running RANSAC on the pair, it updates the distribution of its inlier ratio probability in a principled way via a Bayesian approach. Once the expected inlier ratio drops below an adaptive threshold, the method puts back the pair in the processing queue ordered by the updated inlier ratio expectations. The algorithms are tested on more than 600k real image pairs. They accelerate the pose-graph generation by an order-of-magnitude on average. The code will be made available.
Název v anglickém jazyce
Pose-graph via Adaptive Image Re-ordering
Popis výsledku anglicky
We introduce novel methods that speed up the pose-graph generation for global Structure-from-Motion algorithms. We replace the widely used ``accept-or-reject'' strategy for image pairs, where often thousands of RANSAC iterations are wasted on pairs with low inlier ratio or on non-matchable ones. The new algorithm exploits the fact that every unsuccessful RANSAC iteration reduces the probability of an image pair being matchable, i.e., it reduces its inlier ratio expectation. The method always selects the most promising pair for matching. While running RANSAC on the pair, it updates the distribution of its inlier ratio probability in a principled way via a Bayesian approach. Once the expected inlier ratio drops below an adaptive threshold, the method puts back the pair in the processing queue ordered by the updated inlier ratio expectations. The algorithms are tested on more than 600k real image pairs. They accelerate the pose-graph generation by an order-of-magnitude on average. The code will be made available.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Výzkumné centrum informatiky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů