Guiding Robot Model Construction with Prior Features
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00353560" target="_blank" >RIV/68407700:21230/21:00353560 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21730/21:00353560
Výsledek na webu
<a href="https://doi.org/10.1109/IROS51168.2021.9635831" target="_blank" >https://doi.org/10.1109/IROS51168.2021.9635831</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/IROS51168.2021.9635831" target="_blank" >10.1109/IROS51168.2021.9635831</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Guiding Robot Model Construction with Prior Features
Popis výsledku v původním jazyce
Virtually all robot control methods benefit from the availability of an accurate mathematical model of the robot. However, obtaining a sufficient amount of informative data for constructing dynamic models can be difficult, especially when the models are to be learned during robot deployment. Under such circumstances, standard data-driven model learning techniques often yield models that do not comply with the physics of the robot. We extend a symbolic regression algorithm based on Single Node Genetic Programming by including the prior model information into the model construction process. In this way, symbolic regression automatically builds models that compensate for theoretical or empirical model deficiencies. We experimentally demonstrate the approach on two real-world systems: the TurtleBot 2 mobile robot and the Parrot Bebop 2 drone. The results show that the proposed model-learning algorithm produces realistic models that fit well the training data even when using small training sets. Passing the prior model information to the algorithm significantly improves the model accuracy while speeding up the search.
Název v anglickém jazyce
Guiding Robot Model Construction with Prior Features
Popis výsledku anglicky
Virtually all robot control methods benefit from the availability of an accurate mathematical model of the robot. However, obtaining a sufficient amount of informative data for constructing dynamic models can be difficult, especially when the models are to be learned during robot deployment. Under such circumstances, standard data-driven model learning techniques often yield models that do not comply with the physics of the robot. We extend a symbolic regression algorithm based on Single Node Genetic Programming by including the prior model information into the model construction process. In this way, symbolic regression automatically builds models that compensate for theoretical or empirical model deficiencies. We experimentally demonstrate the approach on two real-world systems: the TurtleBot 2 mobile robot and the Parrot Bebop 2 drone. The results show that the proposed model-learning algorithm produces realistic models that fit well the training data even when using small training sets. Passing the prior model information to the algorithm significantly improves the model accuracy while speeding up the search.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000470" target="_blank" >EF15_003/0000470: Robotika pro Průmysl 4.0</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
ISBN
978-1-6654-1714-3
ISSN
2153-0858
e-ISSN
2153-0866
Počet stran výsledku
7
Strana od-do
7112-7118
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Praha
Datum konání akce
27. 9. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000755125505101