Multi-objective symbolic regression for physics-aware dynamic modeling
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00350945" target="_blank" >RIV/68407700:21230/21:00350945 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21730/21:00350945
Výsledek na webu
<a href="https://doi.org/10.1016/j.eswa.2021.115210" target="_blank" >https://doi.org/10.1016/j.eswa.2021.115210</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.eswa.2021.115210" target="_blank" >10.1016/j.eswa.2021.115210</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multi-objective symbolic regression for physics-aware dynamic modeling
Popis výsledku v původním jazyce
Virtually all dynamic system control methods benefit from the availability of an accurate mathematical model of the system. This includes also methods like reinforcement learning, which can be vastly sped up and made safer by using a dynamic system model. However, obtaining a sufficient amount of informative data for constructing dynamic models can be difficult. Consequently, standard data-driven model learning techniques using small data sets that do not cover all important properties of the system yield models that are partly incorrect, for instance, in terms of their steady-state characteristics or local behavior. However, often some knowledge about the desired physical properties of the model is available. Recently, several symbolic regression approaches making use of such knowledge to compensate for data insufficiency were proposed. Therefore, this knowledge should be incorporated into the model learning process to compensate for data insufficiency. In this paper, we consider a multi-objective symbolic regression method that optimizes models with respect to their training error and the measure of how well they comply with the desired physical properties. We propose an extension to the existing algorithm that helps generate a diverse set of high-quality models. Further, we propose a method for selecting a single final model out of the pool of candidate output models. We experimentally demonstrate the approach on three real systems: the TurtleBot 2 mobile robot, the Parrot Bebop 2 drone and the magnetic manipulation system. The results show that the proposed model-learning algorithm yields accurate models that are physically justified. The improvement in terms of the model’s compliance with prior knowledge over the models obtained when no prior knowledge was involved in the learning process is of several orders of magnitude.
Název v anglickém jazyce
Multi-objective symbolic regression for physics-aware dynamic modeling
Popis výsledku anglicky
Virtually all dynamic system control methods benefit from the availability of an accurate mathematical model of the system. This includes also methods like reinforcement learning, which can be vastly sped up and made safer by using a dynamic system model. However, obtaining a sufficient amount of informative data for constructing dynamic models can be difficult. Consequently, standard data-driven model learning techniques using small data sets that do not cover all important properties of the system yield models that are partly incorrect, for instance, in terms of their steady-state characteristics or local behavior. However, often some knowledge about the desired physical properties of the model is available. Recently, several symbolic regression approaches making use of such knowledge to compensate for data insufficiency were proposed. Therefore, this knowledge should be incorporated into the model learning process to compensate for data insufficiency. In this paper, we consider a multi-objective symbolic regression method that optimizes models with respect to their training error and the measure of how well they comply with the desired physical properties. We propose an extension to the existing algorithm that helps generate a diverse set of high-quality models. Further, we propose a method for selecting a single final model out of the pool of candidate output models. We experimentally demonstrate the approach on three real systems: the TurtleBot 2 mobile robot, the Parrot Bebop 2 drone and the magnetic manipulation system. The results show that the proposed model-learning algorithm yields accurate models that are physically justified. The improvement in terms of the model’s compliance with prior knowledge over the models obtained when no prior knowledge was involved in the learning process is of several orders of magnitude.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000470" target="_blank" >EF15_003/0000470: Robotika pro Průmysl 4.0</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Expert Systems with Applications
ISSN
0957-4174
e-ISSN
1873-6793
Svazek periodika
182
Číslo periodika v rámci svazku
November
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
12
Strana od-do
1-12
Kód UT WoS článku
000688440500009
EID výsledku v databázi Scopus
2-s2.0-85108997455