Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Multi-objective symbolic regression for physics-aware dynamic modeling

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00350945" target="_blank" >RIV/68407700:21230/21:00350945 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68407700:21730/21:00350945

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.eswa.2021.115210" target="_blank" >https://doi.org/10.1016/j.eswa.2021.115210</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.eswa.2021.115210" target="_blank" >10.1016/j.eswa.2021.115210</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Multi-objective symbolic regression for physics-aware dynamic modeling

  • Popis výsledku v původním jazyce

    Virtually all dynamic system control methods benefit from the availability of an accurate mathematical model of the system. This includes also methods like reinforcement learning, which can be vastly sped up and made safer by using a dynamic system model. However, obtaining a sufficient amount of informative data for constructing dynamic models can be difficult. Consequently, standard data-driven model learning techniques using small data sets that do not cover all important properties of the system yield models that are partly incorrect, for instance, in terms of their steady-state characteristics or local behavior. However, often some knowledge about the desired physical properties of the model is available. Recently, several symbolic regression approaches making use of such knowledge to compensate for data insufficiency were proposed. Therefore, this knowledge should be incorporated into the model learning process to compensate for data insufficiency. In this paper, we consider a multi-objective symbolic regression method that optimizes models with respect to their training error and the measure of how well they comply with the desired physical properties. We propose an extension to the existing algorithm that helps generate a diverse set of high-quality models. Further, we propose a method for selecting a single final model out of the pool of candidate output models. We experimentally demonstrate the approach on three real systems: the TurtleBot 2 mobile robot, the Parrot Bebop 2 drone and the magnetic manipulation system. The results show that the proposed model-learning algorithm yields accurate models that are physically justified. The improvement in terms of the model’s compliance with prior knowledge over the models obtained when no prior knowledge was involved in the learning process is of several orders of magnitude.

  • Název v anglickém jazyce

    Multi-objective symbolic regression for physics-aware dynamic modeling

  • Popis výsledku anglicky

    Virtually all dynamic system control methods benefit from the availability of an accurate mathematical model of the system. This includes also methods like reinforcement learning, which can be vastly sped up and made safer by using a dynamic system model. However, obtaining a sufficient amount of informative data for constructing dynamic models can be difficult. Consequently, standard data-driven model learning techniques using small data sets that do not cover all important properties of the system yield models that are partly incorrect, for instance, in terms of their steady-state characteristics or local behavior. However, often some knowledge about the desired physical properties of the model is available. Recently, several symbolic regression approaches making use of such knowledge to compensate for data insufficiency were proposed. Therefore, this knowledge should be incorporated into the model learning process to compensate for data insufficiency. In this paper, we consider a multi-objective symbolic regression method that optimizes models with respect to their training error and the measure of how well they comply with the desired physical properties. We propose an extension to the existing algorithm that helps generate a diverse set of high-quality models. Further, we propose a method for selecting a single final model out of the pool of candidate output models. We experimentally demonstrate the approach on three real systems: the TurtleBot 2 mobile robot, the Parrot Bebop 2 drone and the magnetic manipulation system. The results show that the proposed model-learning algorithm yields accurate models that are physically justified. The improvement in terms of the model’s compliance with prior knowledge over the models obtained when no prior knowledge was involved in the learning process is of several orders of magnitude.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF15_003%2F0000470" target="_blank" >EF15_003/0000470: Robotika pro Průmysl 4.0</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Expert Systems with Applications

  • ISSN

    0957-4174

  • e-ISSN

    1873-6793

  • Svazek periodika

    182

  • Číslo periodika v rámci svazku

    November

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    12

  • Strana od-do

    1-12

  • Kód UT WoS článku

    000688440500009

  • EID výsledku v databázi Scopus

    2-s2.0-85108997455