Symbolic Regression Driven by Training Data and Prior Knowledge
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00344484" target="_blank" >RIV/68407700:21230/20:00344484 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21730/20:00344484
Výsledek na webu
<a href="https://doi.org/10.1145/3377930.3390152" target="_blank" >https://doi.org/10.1145/3377930.3390152</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3377930.3390152" target="_blank" >10.1145/3377930.3390152</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Symbolic Regression Driven by Training Data and Prior Knowledge
Popis výsledku v původním jazyce
In symbolic regression, the search for analytic models is typically driven purely by the prediction error observed on the training data samples. However, when the data samples do not sufficiently cover the input space, the prediction error does not provide sufficient guidance toward desired models. Standard symbolic regression techniques then yield models that are partially incorrect, for instance, in terms of their steady-state characteristics or local behavior. If these properties were considered already during the search process, more accurate and relevant models could be produced. We propose a multi-objective symbolic regression approach that is driven by both the training data and the prior knowledge of the properties the desired model should manifest. The properties given in the form of formal constraints are internally represented by a set of discrete data samples on which candidate models are exactly checked. The proposed approach was experimentally evaluated on three test problems with results clearly demonstrating its capability to evolve realistic models that fit the training data well while complying with the prior knowledge of the desired model characteristics at the same time. It outperforms standard symbolic regression by several orders of magnitude in terms of the mean squared deviation from a reference model.
Název v anglickém jazyce
Symbolic Regression Driven by Training Data and Prior Knowledge
Popis výsledku anglicky
In symbolic regression, the search for analytic models is typically driven purely by the prediction error observed on the training data samples. However, when the data samples do not sufficiently cover the input space, the prediction error does not provide sufficient guidance toward desired models. Standard symbolic regression techniques then yield models that are partially incorrect, for instance, in terms of their steady-state characteristics or local behavior. If these properties were considered already during the search process, more accurate and relevant models could be produced. We propose a multi-objective symbolic regression approach that is driven by both the training data and the prior knowledge of the properties the desired model should manifest. The properties given in the form of formal constraints are internally represented by a set of discrete data samples on which candidate models are exactly checked. The proposed approach was experimentally evaluated on three test problems with results clearly demonstrating its capability to evolve realistic models that fit the training data well while complying with the prior knowledge of the desired model characteristics at the same time. It outperforms standard symbolic regression by several orders of magnitude in terms of the mean squared deviation from a reference model.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000470" target="_blank" >EF15_003/0000470: Robotika pro Průmysl 4.0</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
GECCO '20: Proceedings of the 2020 Genetic and Evolutionary Computation Conference
ISBN
978-1-4503-7128-5
ISSN
—
e-ISSN
—
Počet stran výsledku
9
Strana od-do
958-966
Název nakladatele
Association for Computing Machinery
Místo vydání
New York
Místo konání akce
Cancun
Datum konání akce
8. 7. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000605292300111