Self-Supervised Learning of Camera-based Drivable Surface Roughness
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00354062" target="_blank" >RIV/68407700:21230/21:00354062 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/IV48863.2021.9575288" target="_blank" >https://doi.org/10.1109/IV48863.2021.9575288</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/IV48863.2021.9575288" target="_blank" >10.1109/IV48863.2021.9575288</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Self-Supervised Learning of Camera-based Drivable Surface Roughness
Popis výsledku v původním jazyce
A self-supervised method to train a visual predictor of drivable surface roughness in front of a vehicle is proposed. A convolutional neural network taking a single camera image is trained on a dataset labeled automatically by a cross-modal supervision. The dataset is collected by driving a vehicle on various surfaces, while synchronously recording images and accelerometer data. The surface images are labeled by the local roughness measured using the accelerometer signal aligned in time. Our experiments show that the proposed training scheme results in accurate visual predictor. The correlation coefficient between the visually predicted roughness and the true roughness (measured by the accelerometer) is 0.9 on our independent test set of about 1000 images. The proposed method clearly outperforms a baseline method which has the correlation of 0.3 only. The baseline is based on surface texture strength without any training. Moreover, we show a coarse map of local surface roughness, which is implemented by scanning an input image with the trained convolutional network. The proposed method provides automatic and objective road condition assessment, enabling a cheap and reliable alternative to manual data annotation, which is infeasible in a large scale.
Název v anglickém jazyce
Self-Supervised Learning of Camera-based Drivable Surface Roughness
Popis výsledku anglicky
A self-supervised method to train a visual predictor of drivable surface roughness in front of a vehicle is proposed. A convolutional neural network taking a single camera image is trained on a dataset labeled automatically by a cross-modal supervision. The dataset is collected by driving a vehicle on various surfaces, while synchronously recording images and accelerometer data. The surface images are labeled by the local roughness measured using the accelerometer signal aligned in time. Our experiments show that the proposed training scheme results in accurate visual predictor. The correlation coefficient between the visually predicted roughness and the true roughness (measured by the accelerometer) is 0.9 on our independent test set of about 1000 images. The proposed method clearly outperforms a baseline method which has the correlation of 0.3 only. The baseline is based on surface texture strength without any training. Moreover, we show a coarse map of local surface roughness, which is implemented by scanning an input image with the trained convolutional network. The proposed method provides automatic and objective road condition assessment, enabling a cheap and reliable alternative to manual data annotation, which is infeasible in a large scale.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20204 - Robotics and automatic control
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of 2021 IEEE Intelligent Vehicles Symposium (IV)
ISBN
978-1-7281-5394-0
ISSN
—
e-ISSN
—
Počet stran výsledku
7
Strana od-do
1319-1325
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Nagoya
Datum konání akce
11. 7. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—