Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Computing stable resultant-based minimal solvers by hiding a variable

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00354781" target="_blank" >RIV/68407700:21230/21:00354781 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1109/ICPR48806.2021.9411957" target="_blank" >https://doi.org/10.1109/ICPR48806.2021.9411957</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ICPR48806.2021.9411957" target="_blank" >10.1109/ICPR48806.2021.9411957</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Computing stable resultant-based minimal solvers by hiding a variable

  • Popis výsledku v původním jazyce

    Many computer vision applications require robust and efficient estimation of camera geometry. The robust estimation is usually based on solving camera geometry problems from a minimal number of input data measurements, i.e., solving minimal problems, in a RANSAC-style framework. Minimal problems often result in complex systems of polynomial equations. The existing state-of-the-art methods for solving such systems are either based on Gröbner bases and the action matrix method, which have been extensively studied and optimized in the recent years or recently proposed approach based on a resultant computation using an extra variable. In this paper, we study an interesting alternative resultant-based method for solving sparse systems of polynomial equations by hiding one variable. This approach results in a larger eigenvalue problem than the action matrix and extra variable resultant-based methods; however, it does not need to compute an inverse or elimination of large matrices that may be numerically unstable. The proposed approach includes several improvements to the standard sparse resultant algorithms, which significantly improves the efficiency and stability of the hidden variable resultant-based solvers as we demonstrate on several interesting computer vision problems. We show that for the studied problems, our sparse resultant based approach leads to more stable solvers than the state-of-the-art Gröbner basis as well as existing resultant-based solvers, especially in close to critical configurations. Our new method can be fully automated and incorporated into existing tools for the automatic generation of efficient minimal solvers.

  • Název v anglickém jazyce

    Computing stable resultant-based minimal solvers by hiding a variable

  • Popis výsledku anglicky

    Many computer vision applications require robust and efficient estimation of camera geometry. The robust estimation is usually based on solving camera geometry problems from a minimal number of input data measurements, i.e., solving minimal problems, in a RANSAC-style framework. Minimal problems often result in complex systems of polynomial equations. The existing state-of-the-art methods for solving such systems are either based on Gröbner bases and the action matrix method, which have been extensively studied and optimized in the recent years or recently proposed approach based on a resultant computation using an extra variable. In this paper, we study an interesting alternative resultant-based method for solving sparse systems of polynomial equations by hiding one variable. This approach results in a larger eigenvalue problem than the action matrix and extra variable resultant-based methods; however, it does not need to compute an inverse or elimination of large matrices that may be numerically unstable. The proposed approach includes several improvements to the standard sparse resultant algorithms, which significantly improves the efficiency and stability of the hidden variable resultant-based solvers as we demonstrate on several interesting computer vision problems. We show that for the studied problems, our sparse resultant based approach leads to more stable solvers than the state-of-the-art Gröbner basis as well as existing resultant-based solvers, especially in close to critical configurations. Our new method can be fully automated and incorporated into existing tools for the automatic generation of efficient minimal solvers.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Výzkumné centrum informatiky</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    2020 25th International Conference on Pattern Recognition (ICPR)

  • ISBN

    978-1-7281-8808-9

  • ISSN

    1051-4651

  • e-ISSN

    1051-4651

  • Počet stran výsledku

    8

  • Strana od-do

    6104-6111

  • Název nakladatele

    IEEE Computer Society

  • Místo vydání

    Los Alamitos

  • Místo konání akce

    Milan

  • Datum konání akce

    10. 1. 2021

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000678409206032