Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Neural Networks for Model-free and Scale-free Automated Planning

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00354896" target="_blank" >RIV/68407700:21230/21:00354896 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1007/s10115-021-01619-8" target="_blank" >https://doi.org/10.1007/s10115-021-01619-8</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10115-021-01619-8" target="_blank" >10.1007/s10115-021-01619-8</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Neural Networks for Model-free and Scale-free Automated Planning

  • Popis výsledku v původním jazyce

    Automated planning for problems without an explicit model is an elusive research challenge. However, if tackled, it could provide a general approach to problems in real-world unstructured environments. There are currently two strong research directions in the area of artificial intelligence (AI), namely machine learning and symbolic AI. The former provides techniques to learn models of unstructured data but does not provide further problem solving capabilities on such models. The latter provides efficient algorithms for general problem solving, but requires a model to work with. Creating the model can itself be a bottleneck of many problem domains. Complicated problems require an explicit description that can be very costly or even impossible to create. In this paper, we propose a combination of the two areas, namely deep learning and classical planning, to form a planning system that works without a human-encoded model for variably scaled problems. The deep learning part extracts the model in the form of a transition system and a goal-distance heuristic estimator; the classical planning part uses such a model to efficiently solve the planning problem. Both networks in the planning system, we introduced, work with a problem in its graphic form and there is no need for any additional information to create the state transition system or to estimate a heuristic value. We proposed three different architectures for the heuristic estimator to compare different characteristics of well-known deep learning techniques. Besides the design of such planning systems, we provide experimental evaluation comparing the implemented techniques to classical model-based methods.

  • Název v anglickém jazyce

    Neural Networks for Model-free and Scale-free Automated Planning

  • Popis výsledku anglicky

    Automated planning for problems without an explicit model is an elusive research challenge. However, if tackled, it could provide a general approach to problems in real-world unstructured environments. There are currently two strong research directions in the area of artificial intelligence (AI), namely machine learning and symbolic AI. The former provides techniques to learn models of unstructured data but does not provide further problem solving capabilities on such models. The latter provides efficient algorithms for general problem solving, but requires a model to work with. Creating the model can itself be a bottleneck of many problem domains. Complicated problems require an explicit description that can be very costly or even impossible to create. In this paper, we propose a combination of the two areas, namely deep learning and classical planning, to form a planning system that works without a human-encoded model for variably scaled problems. The deep learning part extracts the model in the form of a transition system and a goal-distance heuristic estimator; the classical planning part uses such a model to efficiently solve the planning problem. Both networks in the planning system, we introduced, work with a problem in its graphic form and there is no need for any additional information to create the state transition system or to estimate a heuristic value. We proposed three different architectures for the heuristic estimator to compare different characteristics of well-known deep learning techniques. Besides the design of such planning systems, we provide experimental evaluation comparing the implemented techniques to classical model-based methods.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GJ18-24965Y" target="_blank" >GJ18-24965Y: Multi-agentní plánování s ochranou soukromých informací</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Knowledge and Information Systems

  • ISSN

    0219-1377

  • e-ISSN

    0219-3116

  • Svazek periodika

    63

  • Číslo periodika v rámci svazku

    12

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    36

  • Strana od-do

    3103-3138

  • Kód UT WoS článku

    000713906900001

  • EID výsledku v databázi Scopus

    2-s2.0-85118454002