Neural Networks for Model-free and Scale-free Automated Planning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00354896" target="_blank" >RIV/68407700:21230/21:00354896 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s10115-021-01619-8" target="_blank" >https://doi.org/10.1007/s10115-021-01619-8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10115-021-01619-8" target="_blank" >10.1007/s10115-021-01619-8</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Neural Networks for Model-free and Scale-free Automated Planning
Popis výsledku v původním jazyce
Automated planning for problems without an explicit model is an elusive research challenge. However, if tackled, it could provide a general approach to problems in real-world unstructured environments. There are currently two strong research directions in the area of artificial intelligence (AI), namely machine learning and symbolic AI. The former provides techniques to learn models of unstructured data but does not provide further problem solving capabilities on such models. The latter provides efficient algorithms for general problem solving, but requires a model to work with. Creating the model can itself be a bottleneck of many problem domains. Complicated problems require an explicit description that can be very costly or even impossible to create. In this paper, we propose a combination of the two areas, namely deep learning and classical planning, to form a planning system that works without a human-encoded model for variably scaled problems. The deep learning part extracts the model in the form of a transition system and a goal-distance heuristic estimator; the classical planning part uses such a model to efficiently solve the planning problem. Both networks in the planning system, we introduced, work with a problem in its graphic form and there is no need for any additional information to create the state transition system or to estimate a heuristic value. We proposed three different architectures for the heuristic estimator to compare different characteristics of well-known deep learning techniques. Besides the design of such planning systems, we provide experimental evaluation comparing the implemented techniques to classical model-based methods.
Název v anglickém jazyce
Neural Networks for Model-free and Scale-free Automated Planning
Popis výsledku anglicky
Automated planning for problems without an explicit model is an elusive research challenge. However, if tackled, it could provide a general approach to problems in real-world unstructured environments. There are currently two strong research directions in the area of artificial intelligence (AI), namely machine learning and symbolic AI. The former provides techniques to learn models of unstructured data but does not provide further problem solving capabilities on such models. The latter provides efficient algorithms for general problem solving, but requires a model to work with. Creating the model can itself be a bottleneck of many problem domains. Complicated problems require an explicit description that can be very costly or even impossible to create. In this paper, we propose a combination of the two areas, namely deep learning and classical planning, to form a planning system that works without a human-encoded model for variably scaled problems. The deep learning part extracts the model in the form of a transition system and a goal-distance heuristic estimator; the classical planning part uses such a model to efficiently solve the planning problem. Both networks in the planning system, we introduced, work with a problem in its graphic form and there is no need for any additional information to create the state transition system or to estimate a heuristic value. We proposed three different architectures for the heuristic estimator to compare different characteristics of well-known deep learning techniques. Besides the design of such planning systems, we provide experimental evaluation comparing the implemented techniques to classical model-based methods.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ18-24965Y" target="_blank" >GJ18-24965Y: Multi-agentní plánování s ochranou soukromých informací</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Knowledge and Information Systems
ISSN
0219-1377
e-ISSN
0219-3116
Svazek periodika
63
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
36
Strana od-do
3103-3138
Kód UT WoS článku
000713906900001
EID výsledku v databázi Scopus
2-s2.0-85118454002