Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Heuristic Search Optimisation Using Planning and Curriculum Learning Techniques

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00373634" target="_blank" >RIV/68407700:21230/23:00373634 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1007/978-3-031-49008-8_39" target="_blank" >https://doi.org/10.1007/978-3-031-49008-8_39</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-49008-8_39" target="_blank" >10.1007/978-3-031-49008-8_39</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Heuristic Search Optimisation Using Planning and Curriculum Learning Techniques

  • Popis výsledku v původním jazyce

    Learning a well-informed heuristic function for hard planning domains is an elusive problem. Although there are known neural network architectures to represent such heuristic knowledge, it is not obvious what concrete information is learned and whether techniques aimed at understanding the structure help in improving the quality of the heuristics. This paper presents a network model that learns a heuristic function capable of relating distant parts of the state space via optimal plan imitation using the attention mechanism which drastically improves the learning of a good heuristic function. The learning of this heuristic function is further improved by the use of curriculum learning, where newly solved problem instances are added to the training set, which, in turn, helps to solve problems of higher complexities and train from harder problem instances. The methodologies used in this paper far exceed the performances of all existing baselines including known deep learning approaches and classical planning heuristics. We demonstrate its effectiveness and success on grid-type PDDL domains, namely Sokoban, maze-with-teleports and sliding tile puzzles.

  • Název v anglickém jazyce

    Heuristic Search Optimisation Using Planning and Curriculum Learning Techniques

  • Popis výsledku anglicky

    Learning a well-informed heuristic function for hard planning domains is an elusive problem. Although there are known neural network architectures to represent such heuristic knowledge, it is not obvious what concrete information is learned and whether techniques aimed at understanding the structure help in improving the quality of the heuristics. This paper presents a network model that learns a heuristic function capable of relating distant parts of the state space via optimal plan imitation using the attention mechanism which drastically improves the learning of a good heuristic function. The learning of this heuristic function is further improved by the use of curriculum learning, where newly solved problem instances are added to the training set, which, in turn, helps to solve problems of higher complexities and train from harder problem instances. The methodologies used in this paper far exceed the performances of all existing baselines including known deep learning approaches and classical planning heuristics. We demonstrate its effectiveness and success on grid-type PDDL domains, namely Sokoban, maze-with-teleports and sliding tile puzzles.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Progress in Artificial Intelligence, 22nd EPIA Conference on Artificial Intelligence, EPIA 2023, Faial Island, Azores, September 5–8, 2023, Proceedings, Part I

  • ISBN

    978-3-031-49007-1

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Počet stran výsledku

    13

  • Strana od-do

    495-507

  • Název nakladatele

    Springer, Cham

  • Místo vydání

  • Místo konání akce

    Faial Island

  • Datum konání akce

    5. 9. 2023

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    001160573500039