Heuristic Search Optimisation Using Planning and Curriculum Learning Techniques
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00373634" target="_blank" >RIV/68407700:21230/23:00373634 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-031-49008-8_39" target="_blank" >https://doi.org/10.1007/978-3-031-49008-8_39</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-49008-8_39" target="_blank" >10.1007/978-3-031-49008-8_39</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Heuristic Search Optimisation Using Planning and Curriculum Learning Techniques
Popis výsledku v původním jazyce
Learning a well-informed heuristic function for hard planning domains is an elusive problem. Although there are known neural network architectures to represent such heuristic knowledge, it is not obvious what concrete information is learned and whether techniques aimed at understanding the structure help in improving the quality of the heuristics. This paper presents a network model that learns a heuristic function capable of relating distant parts of the state space via optimal plan imitation using the attention mechanism which drastically improves the learning of a good heuristic function. The learning of this heuristic function is further improved by the use of curriculum learning, where newly solved problem instances are added to the training set, which, in turn, helps to solve problems of higher complexities and train from harder problem instances. The methodologies used in this paper far exceed the performances of all existing baselines including known deep learning approaches and classical planning heuristics. We demonstrate its effectiveness and success on grid-type PDDL domains, namely Sokoban, maze-with-teleports and sliding tile puzzles.
Název v anglickém jazyce
Heuristic Search Optimisation Using Planning and Curriculum Learning Techniques
Popis výsledku anglicky
Learning a well-informed heuristic function for hard planning domains is an elusive problem. Although there are known neural network architectures to represent such heuristic knowledge, it is not obvious what concrete information is learned and whether techniques aimed at understanding the structure help in improving the quality of the heuristics. This paper presents a network model that learns a heuristic function capable of relating distant parts of the state space via optimal plan imitation using the attention mechanism which drastically improves the learning of a good heuristic function. The learning of this heuristic function is further improved by the use of curriculum learning, where newly solved problem instances are added to the training set, which, in turn, helps to solve problems of higher complexities and train from harder problem instances. The methodologies used in this paper far exceed the performances of all existing baselines including known deep learning approaches and classical planning heuristics. We demonstrate its effectiveness and success on grid-type PDDL domains, namely Sokoban, maze-with-teleports and sliding tile puzzles.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Progress in Artificial Intelligence, 22nd EPIA Conference on Artificial Intelligence, EPIA 2023, Faial Island, Azores, September 5–8, 2023, Proceedings, Part I
ISBN
978-3-031-49007-1
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
13
Strana od-do
495-507
Název nakladatele
Springer, Cham
Místo vydání
—
Místo konání akce
Faial Island
Datum konání akce
5. 9. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001160573500039