Galois/monodromy groups in 3D reconstruction
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00356034" target="_blank" >RIV/68407700:21230/21:00356034 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21730/21:00356034
Výsledek na webu
<a href="https://meetings.ams.org/math/jmm2021/meetingapp.cgi/Paper/2557" target="_blank" >https://meetings.ams.org/math/jmm2021/meetingapp.cgi/Paper/2557</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Galois/monodromy groups in 3D reconstruction
Popis výsledku v původním jazyce
In computer vision, the study of minimal problems is critical for many 3D reconstruction tasks. Solving minimal problems comes down to solving systems of polynomial equations of a very particular structure. ``Structure" of minimal problems may be understood in terms of the Galois/monodromy group of an associated branched cover. We compute these groups for many examples using numerical homotopy continuation methods. Classical problems such as five-point relative pose, planar calibrated homography estimation, and perspective absolute pose give rise to imprimitive Galois groups, and solutions to these problems typically exploit a corresponding decomposition of the associated branched cover. Beside analyzing these cases, we find also several novel minimal problems whose Galois groups are imprimitive and may be reasonable to solve in practical applications.
Název v anglickém jazyce
Galois/monodromy groups in 3D reconstruction
Popis výsledku anglicky
In computer vision, the study of minimal problems is critical for many 3D reconstruction tasks. Solving minimal problems comes down to solving systems of polynomial equations of a very particular structure. ``Structure" of minimal problems may be understood in terms of the Galois/monodromy group of an associated branched cover. We compute these groups for many examples using numerical homotopy continuation methods. Classical problems such as five-point relative pose, planar calibrated homography estimation, and perspective absolute pose give rise to imprimitive Galois groups, and solutions to these problems typically exploit a corresponding decomposition of the associated branched cover. Beside analyzing these cases, we find also several novel minimal problems whose Galois groups are imprimitive and may be reasonable to solve in practical applications.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000468" target="_blank" >EF15_003/0000468: Inteligentní strojové vnímání</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů