Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Monocular Teach-and-Repeat Navigation using a Deep Steering Network with Scale Estimation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00357705" target="_blank" >RIV/68407700:21230/21:00357705 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1109/IROS51168.2021.9635912" target="_blank" >https://doi.org/10.1109/IROS51168.2021.9635912</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/IROS51168.2021.9635912" target="_blank" >10.1109/IROS51168.2021.9635912</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Monocular Teach-and-Repeat Navigation using a Deep Steering Network with Scale Estimation

  • Popis výsledku v původním jazyce

    This paper proposes a novel monocular teach-and-repeat navigation system with the capability of scale awareness, i.e. the absolute distance between observation and goal images. It decomposes the navigation task into a sequence of visual servoing sub-tasks to approach consecutive goal/node images in a topological map. To be specific, a novel hybrid model, named deep steering network is proposed to infer the navigation primitives according to the learned local feature and scale for each visual servoing sub-task. A novel architecture, Scale-Transformer, is developed to estimate the absolute scale between the observation and goal image pair from a set of matched deep representations to assist repeating navigation. The experiments demonstrate that our scale-aware teach-and-repeat method achieves satisfying navigation accuracy, and converges faster than the monocular methods without scale correction given an inaccurate initial pose.

  • Název v anglickém jazyce

    Monocular Teach-and-Repeat Navigation using a Deep Steering Network with Scale Estimation

  • Popis výsledku anglicky

    This paper proposes a novel monocular teach-and-repeat navigation system with the capability of scale awareness, i.e. the absolute distance between observation and goal images. It decomposes the navigation task into a sequence of visual servoing sub-tasks to approach consecutive goal/node images in a topological map. To be specific, a novel hybrid model, named deep steering network is proposed to infer the navigation primitives according to the learned local feature and scale for each visual servoing sub-task. A novel architecture, Scale-Transformer, is developed to estimate the absolute scale between the observation and goal image pair from a set of matched deep representations to assist repeating navigation. The experiments demonstrate that our scale-aware teach-and-repeat method achieves satisfying navigation accuracy, and converges faster than the monocular methods without scale correction given an inaccurate initial pose.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GC20-27034J" target="_blank" >GC20-27034J: Rozšíření prostorových modelů explicitní representací času pro dlouhodobou autonomii mobilních robotů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

  • ISBN

    978-1-6654-1714-3

  • ISSN

    2153-0858

  • e-ISSN

    2153-0866

  • Počet stran výsledku

    7

  • Strana od-do

    2613-2619

  • Název nakladatele

    IEEE

  • Místo vydání

    Piscataway

  • Místo konání akce

    Praha

  • Datum konání akce

    27. 9. 2021

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000755125502022