Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Visual Teach and Generalise (VTAG)-Exploiting Perceptual Aliasing for Scalable Autonomous Robotic Navigation in Horticultural Environments

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00367994" target="_blank" >RIV/68407700:21230/23:00367994 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.compag.2023.108054" target="_blank" >https://doi.org/10.1016/j.compag.2023.108054</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.compag.2023.108054" target="_blank" >10.1016/j.compag.2023.108054</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Visual Teach and Generalise (VTAG)-Exploiting Perceptual Aliasing for Scalable Autonomous Robotic Navigation in Horticultural Environments

  • Popis výsledku v původním jazyce

    Nowadays, most agricultural robots rely on precise and expensive localisation, typically based on global navigation satellite systems (GNSS) and real-time kinematic (RTK) receivers. Unfortunately, the precision of GNSS localisation significantly decreases in environments where the signal paths between the receiver and the satellites are obstructed. This precision hampers deployments of these robots in, e.g., polytunnels or forests. An attractive alternative to GNSS is vision-based localisation and navigation. However, perceptual aliasing and landmark deficiency, typical for agricultural environments, cause traditional image processing techniques, such as feature matching, to fail. We propose an approach for an affordable pure vision-based navigation system which is not only robust to perceptual aliasing, but it actually exploits the repetitiveness of agricultural environments. Our system extends the classic concept of visual teach and repeat to visual teach and generalise (VTAG). Our teach and generalise method uses a deep learning-based image registration pipeline to register similar images through meaningful generalised representations obtained from different but similar areas. The proposed system uses only a low-cost uncalibrated monocular camera and the robot's wheel odometry to produce heading corrections to traverse crop rows in polytunnels safely. We evaluate this method at our test farm and at a commercial farm on three different robotic platforms where an operator teaches only a single crop row. With all platforms, the method successfully navigates the majority of rows with most interventions required at the end of the rows, where the camera no longer has a view of any repeating landmarks such as poles, crop row tables or rows which have visually different features to that of the taught row. For one robot which was taught one row 25 m long our approach autonomously navigated the robot a total distance of over 3.5 km, reaching a teach-generalisation gain of 140.

  • Název v anglickém jazyce

    Visual Teach and Generalise (VTAG)-Exploiting Perceptual Aliasing for Scalable Autonomous Robotic Navigation in Horticultural Environments

  • Popis výsledku anglicky

    Nowadays, most agricultural robots rely on precise and expensive localisation, typically based on global navigation satellite systems (GNSS) and real-time kinematic (RTK) receivers. Unfortunately, the precision of GNSS localisation significantly decreases in environments where the signal paths between the receiver and the satellites are obstructed. This precision hampers deployments of these robots in, e.g., polytunnels or forests. An attractive alternative to GNSS is vision-based localisation and navigation. However, perceptual aliasing and landmark deficiency, typical for agricultural environments, cause traditional image processing techniques, such as feature matching, to fail. We propose an approach for an affordable pure vision-based navigation system which is not only robust to perceptual aliasing, but it actually exploits the repetitiveness of agricultural environments. Our system extends the classic concept of visual teach and repeat to visual teach and generalise (VTAG). Our teach and generalise method uses a deep learning-based image registration pipeline to register similar images through meaningful generalised representations obtained from different but similar areas. The proposed system uses only a low-cost uncalibrated monocular camera and the robot's wheel odometry to produce heading corrections to traverse crop rows in polytunnels safely. We evaluate this method at our test farm and at a commercial farm on three different robotic platforms where an operator teaches only a single crop row. With all platforms, the method successfully navigates the majority of rows with most interventions required at the end of the rows, where the camera no longer has a view of any repeating landmarks such as poles, crop row tables or rows which have visually different features to that of the taught row. For one robot which was taught one row 25 m long our approach autonomously navigated the robot a total distance of over 3.5 km, reaching a teach-generalisation gain of 140.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Computers and Electronics in Agriculture

  • ISSN

    0168-1699

  • e-ISSN

    1872-7107

  • Svazek periodika

    212

  • Číslo periodika v rámci svazku

    September

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    11

  • Strana od-do

    1-11

  • Kód UT WoS článku

    001051915100001

  • EID výsledku v databázi Scopus

    2-s2.0-85166487705