PADSA: Priority-Aware Block Data Storage Architecture for Edge Cloud Serving Autonomous Vehicles
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00358782" target="_blank" >RIV/68407700:21230/21:00358782 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/VNC52810.2021.9644617" target="_blank" >https://doi.org/10.1109/VNC52810.2021.9644617</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/VNC52810.2021.9644617" target="_blank" >10.1109/VNC52810.2021.9644617</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
PADSA: Priority-Aware Block Data Storage Architecture for Edge Cloud Serving Autonomous Vehicles
Popis výsledku v původním jazyce
An efficient Input/Output (I/O) caching mechanism for data storage can deliver the desired performance at a reasonable cost to edge nodes serving autonomous vehicles. Current storage caching solutions are proposed to address common applications for autonomous vehicles that are less demanding in terms of the latency (e.g., map or software upgrades). However, a serious revision of these solutions is necessary for autonomous vehicles, which rely on safety- and time-critical communication for services, such as collision avoidance, requiring very low latency. In this paper, we propose a three-level storage caching architecture for virtualized edge cloud platforms serving autonomous vehicles. This architecture prioritizes safety-critical services and allocates the two top-level caches of Dynamic Random Access Memory (DRAM) and Non-Volatile Memory (NVM) to the top priority services. We further evaluate optimum cache space allocated to each service to minimize the average latency. The experimental results show that the proposed architecture reduces the average latency in safety-critical applications by up to 70% compared to the state-of-the-art.
Název v anglickém jazyce
PADSA: Priority-Aware Block Data Storage Architecture for Edge Cloud Serving Autonomous Vehicles
Popis výsledku anglicky
An efficient Input/Output (I/O) caching mechanism for data storage can deliver the desired performance at a reasonable cost to edge nodes serving autonomous vehicles. Current storage caching solutions are proposed to address common applications for autonomous vehicles that are less demanding in terms of the latency (e.g., map or software upgrades). However, a serious revision of these solutions is necessary for autonomous vehicles, which rely on safety- and time-critical communication for services, such as collision avoidance, requiring very low latency. In this paper, we propose a three-level storage caching architecture for virtualized edge cloud platforms serving autonomous vehicles. This architecture prioritizes safety-critical services and allocates the two top-level caches of Dynamic Random Access Memory (DRAM) and Non-Volatile Memory (NVM) to the top priority services. We further evaluate optimum cache space allocated to each service to minimize the average latency. The experimental results show that the proposed architecture reduces the average latency in safety-critical applications by up to 70% compared to the state-of-the-art.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20206 - Computer hardware and architecture
Návaznosti výsledku
Projekt
<a href="/cs/project/EF20_079%2F0017983" target="_blank" >EF20_079/0017983: Mobility ČVUT MSCA-IF-IV-v-79</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2021 IEEE VEHICULAR NETWORKING CONFERENCE (VNC)
ISBN
978-1-6654-4450-7
ISSN
2157-9857
e-ISSN
—
Počet stran výsledku
8
Strana od-do
170-177
Název nakladatele
IEEE
Místo vydání
New York
Místo konání akce
Virtual
Datum konání akce
10. 11. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000758412900037