Reducing Computation, Communication, and Storage Latency in Vehicular Edge Computing
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00379319" target="_blank" >RIV/68407700:21230/24:00379319 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/abstract/document/10683495" target="_blank" >https://ieeexplore.ieee.org/abstract/document/10683495</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/VTC2024-Spring62846.2024.10683495" target="_blank" >10.1109/VTC2024-Spring62846.2024.10683495</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Reducing Computation, Communication, and Storage Latency in Vehicular Edge Computing
Popis výsledku v původním jazyce
This paper addresses the challenge of optimizing communication, computation, and storage I/O caching in Vehicular Edge Computing (VEC) platforms for autonomous vehicles. The exponential data generated by the autonomous vehicles demands low-latency connectivity with nearby edge servers. However, the existing VEC platforms struggle to meet the performance requirements, especially in real-time applications like collision avoidance. This work proposes a novel algorithm for joint allocation of computing resources, storage I/O cache, and communication resources, considering the diverse priorities and demands of key vehicular services. Our approach integrates application-specific optimizations, prioritization, and joint latency reduction considering communication, computation, as well as storage. Accounting for distinct priorities and data access characteristics of various vehicular services, our proposed feasible solution, employing dual decomposition and Lagrangian relaxation, significantly reduces service latency by up to 64% compared to the current state-of-the-art resource allocation in vehicular edge computing.
Název v anglickém jazyce
Reducing Computation, Communication, and Storage Latency in Vehicular Edge Computing
Popis výsledku anglicky
This paper addresses the challenge of optimizing communication, computation, and storage I/O caching in Vehicular Edge Computing (VEC) platforms for autonomous vehicles. The exponential data generated by the autonomous vehicles demands low-latency connectivity with nearby edge servers. However, the existing VEC platforms struggle to meet the performance requirements, especially in real-time applications like collision avoidance. This work proposes a novel algorithm for joint allocation of computing resources, storage I/O cache, and communication resources, considering the diverse priorities and demands of key vehicular services. Our approach integrates application-specific optimizations, prioritization, and joint latency reduction considering communication, computation, as well as storage. Accounting for distinct priorities and data access characteristics of various vehicular services, our proposed feasible solution, employing dual decomposition and Lagrangian relaxation, significantly reduces service latency by up to 64% compared to the current state-of-the-art resource allocation in vehicular edge computing.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20203 - Telecommunications
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of The 2024 IEEE 99th Vehicular Technology Conference: VTC2024-Spring
ISBN
979-8-3503-8741-4
ISSN
2577-2465
e-ISSN
—
Počet stran výsledku
7
Strana od-do
1-7
Název nakladatele
IEEE Vehicular Technology Society
Místo vydání
New York
Místo konání akce
Singapore
Datum konání akce
24. 6. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001327706002141