Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Scheduling jobs with normally distributed processing times on parallel machines

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00350475" target="_blank" >RIV/68407700:21230/22:00350475 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68407700:21730/22:00350475

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.ejor.2021.05.011" target="_blank" >https://doi.org/10.1016/j.ejor.2021.05.011</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ejor.2021.05.011" target="_blank" >10.1016/j.ejor.2021.05.011</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Scheduling jobs with normally distributed processing times on parallel machines

  • Popis výsledku v původním jazyce

    We consider a stochastic parallel machine scheduling problem, where the jobs have uncertain processing time described by a normal probability distribution. The objective is to maximize the probability that all the jobs are completed before a common due date. The considered problem has many practical applications, but it is notoriously known to be difficult as it involves several non-linearities which complicates its analysis and solution. In this work, we have developed novel lower and upper bounds on the objective function. The upper bound is computed via a solution to a problem where a subset of machines is represented as a single machine having a modified due date. Furthermore, we study lower and upper bounds on the number of jobs that must be scheduled on a machine in an optimal schedule. Subsequently, we use the bounds to construct an efficient branch-and-price algorithm where the pricing problem is found to be related to an inflatable stochastic Knapsack problem. An advantage of the branch-and-price algorithm is a constraint branching mechanism that mitigates symmetries in the solution space. The performance evaluation of the proposed algorithm shows that our algorithm outperforms the state-of-the-art method. In this paper, we also study a special case of the problem assuming two machines. We developed a scalable method whose efficiency arises from the concavity of the relaxed objective function and a fast procedure to recover optimal integer solution from it. These improvements allowed us to solve instances with 500 jobs within a few seconds.

  • Název v anglickém jazyce

    Scheduling jobs with normally distributed processing times on parallel machines

  • Popis výsledku anglicky

    We consider a stochastic parallel machine scheduling problem, where the jobs have uncertain processing time described by a normal probability distribution. The objective is to maximize the probability that all the jobs are completed before a common due date. The considered problem has many practical applications, but it is notoriously known to be difficult as it involves several non-linearities which complicates its analysis and solution. In this work, we have developed novel lower and upper bounds on the objective function. The upper bound is computed via a solution to a problem where a subset of machines is represented as a single machine having a modified due date. Furthermore, we study lower and upper bounds on the number of jobs that must be scheduled on a machine in an optimal schedule. Subsequently, we use the bounds to construct an efficient branch-and-price algorithm where the pricing problem is found to be related to an inflatable stochastic Knapsack problem. An advantage of the branch-and-price algorithm is a constraint branching mechanism that mitigates symmetries in the solution space. The performance evaluation of the proposed algorithm shows that our algorithm outperforms the state-of-the-art method. In this paper, we also study a special case of the problem assuming two machines. We developed a scalable method whose efficiency arises from the concavity of the relaxed objective function and a fast procedure to recover optimal integer solution from it. These improvements allowed us to solve instances with 500 jobs within a few seconds.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF15_003%2F0000466" target="_blank" >EF15_003/0000466: Umělá inteligence a uvažování</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    European Journal of Operational Research

  • ISSN

    0377-2217

  • e-ISSN

    1872-6860

  • Svazek periodika

    297

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    20

  • Strana od-do

    422-441

  • Kód UT WoS článku

    000716386200003

  • EID výsledku v databázi Scopus

    2-s2.0-85108953462