Scheduling jobs with normally distributed processing times on parallel machines
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00350475" target="_blank" >RIV/68407700:21230/22:00350475 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21730/22:00350475
Výsledek na webu
<a href="https://doi.org/10.1016/j.ejor.2021.05.011" target="_blank" >https://doi.org/10.1016/j.ejor.2021.05.011</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ejor.2021.05.011" target="_blank" >10.1016/j.ejor.2021.05.011</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Scheduling jobs with normally distributed processing times on parallel machines
Popis výsledku v původním jazyce
We consider a stochastic parallel machine scheduling problem, where the jobs have uncertain processing time described by a normal probability distribution. The objective is to maximize the probability that all the jobs are completed before a common due date. The considered problem has many practical applications, but it is notoriously known to be difficult as it involves several non-linearities which complicates its analysis and solution. In this work, we have developed novel lower and upper bounds on the objective function. The upper bound is computed via a solution to a problem where a subset of machines is represented as a single machine having a modified due date. Furthermore, we study lower and upper bounds on the number of jobs that must be scheduled on a machine in an optimal schedule. Subsequently, we use the bounds to construct an efficient branch-and-price algorithm where the pricing problem is found to be related to an inflatable stochastic Knapsack problem. An advantage of the branch-and-price algorithm is a constraint branching mechanism that mitigates symmetries in the solution space. The performance evaluation of the proposed algorithm shows that our algorithm outperforms the state-of-the-art method. In this paper, we also study a special case of the problem assuming two machines. We developed a scalable method whose efficiency arises from the concavity of the relaxed objective function and a fast procedure to recover optimal integer solution from it. These improvements allowed us to solve instances with 500 jobs within a few seconds.
Název v anglickém jazyce
Scheduling jobs with normally distributed processing times on parallel machines
Popis výsledku anglicky
We consider a stochastic parallel machine scheduling problem, where the jobs have uncertain processing time described by a normal probability distribution. The objective is to maximize the probability that all the jobs are completed before a common due date. The considered problem has many practical applications, but it is notoriously known to be difficult as it involves several non-linearities which complicates its analysis and solution. In this work, we have developed novel lower and upper bounds on the objective function. The upper bound is computed via a solution to a problem where a subset of machines is represented as a single machine having a modified due date. Furthermore, we study lower and upper bounds on the number of jobs that must be scheduled on a machine in an optimal schedule. Subsequently, we use the bounds to construct an efficient branch-and-price algorithm where the pricing problem is found to be related to an inflatable stochastic Knapsack problem. An advantage of the branch-and-price algorithm is a constraint branching mechanism that mitigates symmetries in the solution space. The performance evaluation of the proposed algorithm shows that our algorithm outperforms the state-of-the-art method. In this paper, we also study a special case of the problem assuming two machines. We developed a scalable method whose efficiency arises from the concavity of the relaxed objective function and a fast procedure to recover optimal integer solution from it. These improvements allowed us to solve instances with 500 jobs within a few seconds.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000466" target="_blank" >EF15_003/0000466: Umělá inteligence a uvažování</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
European Journal of Operational Research
ISSN
0377-2217
e-ISSN
1872-6860
Svazek periodika
297
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
20
Strana od-do
422-441
Kód UT WoS článku
000716386200003
EID výsledku v databázi Scopus
2-s2.0-85108953462