Parallel Operations over TFHE-Encrypted Multi-Digit Integers
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00357890" target="_blank" >RIV/68407700:21230/22:00357890 - isvavai.cz</a>
Výsledek na webu
<a href="https://dl.acm.org/doi/10.1145/3508398.3511527" target="_blank" >https://dl.acm.org/doi/10.1145/3508398.3511527</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3508398.3511527" target="_blank" >10.1145/3508398.3511527</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Parallel Operations over TFHE-Encrypted Multi-Digit Integers
Popis výsledku v původním jazyce
Recent advances in Fully Homomorphic Encryption (FHE) allow for a practical evaluation of non-trivial functions over encrypted data. In particular, novel approaches for combining ciphertexts broadened the scope of prospective applications. However, for arithmetic circuits, the overall complexity grows with the desired precision and there is only a limited space for parallelization. In this paper, we put forward several methods for fully parallel addition of multi-digit integers encrypted with the TFHE scheme. Since these methods handle integers in a special representation, we also revisit the signum function, firstly addressed by Bourse et al., and we propose a method for the maximum of two numbers; both with particular respect to parallelization. On top of that, we outline an approach for multiplication by a known integer. According to our experiments, the fastest approach for parallel addition of 31-bit encrypted integers in an idealized setting with 32 threads is estimated to be more than 6x faster than the fastest sequential approach. Finally, we demonstrate our algorithms on an evaluation of a practical neural network.
Název v anglickém jazyce
Parallel Operations over TFHE-Encrypted Multi-Digit Integers
Popis výsledku anglicky
Recent advances in Fully Homomorphic Encryption (FHE) allow for a practical evaluation of non-trivial functions over encrypted data. In particular, novel approaches for combining ciphertexts broadened the scope of prospective applications. However, for arithmetic circuits, the overall complexity grows with the desired precision and there is only a limited space for parallelization. In this paper, we put forward several methods for fully parallel addition of multi-digit integers encrypted with the TFHE scheme. Since these methods handle integers in a special representation, we also revisit the signum function, firstly addressed by Bourse et al., and we propose a method for the maximum of two numbers; both with particular respect to parallelization. On top of that, we outline an approach for multiplication by a known integer. According to our experiments, the fastest approach for parallel addition of 31-bit encrypted integers in an idealized setting with 32 threads is estimated to be more than 6x faster than the fastest sequential approach. Finally, we demonstrate our algorithms on an evaluation of a practical neural network.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
CODASPY '22: Proceedings of the Twelveth ACM Conference on Data and Application Security and Privacy
ISBN
978-1-4503-9220-4
ISSN
—
e-ISSN
—
Počet stran výsledku
12
Strana od-do
288-299
Název nakladatele
Association for Computing Machinery
Místo vydání
New York
Místo konání akce
Baltimore
Datum konání akce
25. 4. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—