WTFHE: neural-netWork-ready Torus Fully Homomorphic Encryption
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00341864" target="_blank" >RIV/68407700:21230/20:00341864 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21240/20:00341864
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9134331" target="_blank" >https://ieeexplore.ieee.org/document/9134331</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/MECO49872.2020.9134331" target="_blank" >10.1109/MECO49872.2020.9134331</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
WTFHE: neural-netWork-ready Torus Fully Homomorphic Encryption
Popis výsledku v původním jazyce
We are currently witnessing two arising trends, which have a huge potential to threaten our privacy: the invasive sensors of the Internet of Things (IoT), and the powerful data mining techniques, in particular we focus on Neural Networks (NN's). For this reason, powerful countermeasures must be called for service: namely end-to-end encryption. Such an approach however requires an encryption scheme that enables processing of the encrypted data - this is known as the Fully Homomorphic Encryption (FHE). In this paper, we revisit an FHE scheme named TFHE, which is suitable for evaluation of NN's over encrypted input data, and we suggest to incorporate a verifiability feature to the evaluation process. Since there already exist other variants of the original TFHE scheme-currently only implemented in C++, which is rigid-we further introduce a library for rapid prototyping of new concepts related to TFHE. Our library is implemented in Ruby, which is an interpreted language and which goes with an interactive shell. Hence any new method can be speedily verified before implemented as a high-performance library.
Název v anglickém jazyce
WTFHE: neural-netWork-ready Torus Fully Homomorphic Encryption
Popis výsledku anglicky
We are currently witnessing two arising trends, which have a huge potential to threaten our privacy: the invasive sensors of the Internet of Things (IoT), and the powerful data mining techniques, in particular we focus on Neural Networks (NN's). For this reason, powerful countermeasures must be called for service: namely end-to-end encryption. Such an approach however requires an encryption scheme that enables processing of the encrypted data - this is known as the Fully Homomorphic Encryption (FHE). In this paper, we revisit an FHE scheme named TFHE, which is suitable for evaluation of NN's over encrypted input data, and we suggest to incorporate a verifiability feature to the evaluation process. Since there already exist other variants of the original TFHE scheme-currently only implemented in C++, which is rigid-we further introduce a library for rapid prototyping of new concepts related to TFHE. Our library is implemented in Ruby, which is an interpreted language and which goes with an interactive shell. Hence any new method can be speedily verified before implemented as a high-performance library.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 9th Mediterranean Conference on Embedded Computing - MECO'2020
ISBN
978-1-7281-6949-1
ISSN
—
e-ISSN
2637-9511
Počet stran výsledku
5
Strana od-do
434-438
Název nakladatele
Institute of Electrical and Electronics Engineers, Inc.
Místo vydání
—
Místo konání akce
Budva
Datum konání akce
8. 6. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000612854100100