Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

TFHE Parameter Setup for Effective and Error-Free Neural Network Prediction on Encrypted Data

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00350548" target="_blank" >RIV/68407700:21230/21:00350548 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1007/978-3-030-80129-8_49" target="_blank" >https://doi.org/10.1007/978-3-030-80129-8_49</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-80129-8_49" target="_blank" >10.1007/978-3-030-80129-8_49</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    TFHE Parameter Setup for Effective and Error-Free Neural Network Prediction on Encrypted Data

  • Popis výsledku v původním jazyce

    With the rise of Cloud and Big Data technologies, Machine Learning as a Service (MLaaS) receives much attention, too. However, in some sense, the current situation resembles the era of wild digitalization, where security was pushed to the sideline. Back then, the problem was mostly about misunderstanding of severe consequences that insecure digitalization might bring. To date, common awareness of security has improved significantly, however, currently we are facing rather a technological challenge. Indeed, we are still missing a competitive and satisfactory solution that would secure MLaaS. In this paper, we contribute to the very recent line of research, which utilizes a Fully Homomorphic Encryption (FHE) scheme by Chillotti et al. named TFHE. It has been shown that TFHE is particularly suitable for securing MLaaS. In addition, its security relies on the famous LWE problem, which is considered quantum-proof. However, it has not been studied yet how all the TFHE parameters are to be set. Hence we provide a thorough analysis of error propagation through TFHE homomorphic computations, based on which we derive constraints on the parameters as well as we suggest a convenient representation of internal objects. We particularly focus on effective resource utilization in order to achieve the best performance of any prospective implementation.

  • Název v anglickém jazyce

    TFHE Parameter Setup for Effective and Error-Free Neural Network Prediction on Encrypted Data

  • Popis výsledku anglicky

    With the rise of Cloud and Big Data technologies, Machine Learning as a Service (MLaaS) receives much attention, too. However, in some sense, the current situation resembles the era of wild digitalization, where security was pushed to the sideline. Back then, the problem was mostly about misunderstanding of severe consequences that insecure digitalization might bring. To date, common awareness of security has improved significantly, however, currently we are facing rather a technological challenge. Indeed, we are still missing a competitive and satisfactory solution that would secure MLaaS. In this paper, we contribute to the very recent line of research, which utilizes a Fully Homomorphic Encryption (FHE) scheme by Chillotti et al. named TFHE. It has been shown that TFHE is particularly suitable for securing MLaaS. In addition, its security relies on the famous LWE problem, which is considered quantum-proof. However, it has not been studied yet how all the TFHE parameters are to be set. Hence we provide a thorough analysis of error propagation through TFHE homomorphic computations, based on which we derive constraints on the parameters as well as we suggest a convenient representation of internal objects. We particularly focus on effective resource utilization in order to achieve the best performance of any prospective implementation.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Intelligent Computing

  • ISBN

    978-3-030-80128-1

  • ISSN

    2367-3370

  • e-ISSN

    2367-3389

  • Počet stran výsledku

    20

  • Strana od-do

    702-721

  • Název nakladatele

    Springer Nature Switzerland AG

  • Místo vydání

    Basel

  • Místo konání akce

    London

  • Datum konání akce

    15. 7. 2021

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku