TFHE Parameter Setup for Effective and Error-Free Neural Network Prediction on Encrypted Data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00350548" target="_blank" >RIV/68407700:21230/21:00350548 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-030-80129-8_49" target="_blank" >https://doi.org/10.1007/978-3-030-80129-8_49</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-80129-8_49" target="_blank" >10.1007/978-3-030-80129-8_49</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
TFHE Parameter Setup for Effective and Error-Free Neural Network Prediction on Encrypted Data
Popis výsledku v původním jazyce
With the rise of Cloud and Big Data technologies, Machine Learning as a Service (MLaaS) receives much attention, too. However, in some sense, the current situation resembles the era of wild digitalization, where security was pushed to the sideline. Back then, the problem was mostly about misunderstanding of severe consequences that insecure digitalization might bring. To date, common awareness of security has improved significantly, however, currently we are facing rather a technological challenge. Indeed, we are still missing a competitive and satisfactory solution that would secure MLaaS. In this paper, we contribute to the very recent line of research, which utilizes a Fully Homomorphic Encryption (FHE) scheme by Chillotti et al. named TFHE. It has been shown that TFHE is particularly suitable for securing MLaaS. In addition, its security relies on the famous LWE problem, which is considered quantum-proof. However, it has not been studied yet how all the TFHE parameters are to be set. Hence we provide a thorough analysis of error propagation through TFHE homomorphic computations, based on which we derive constraints on the parameters as well as we suggest a convenient representation of internal objects. We particularly focus on effective resource utilization in order to achieve the best performance of any prospective implementation.
Název v anglickém jazyce
TFHE Parameter Setup for Effective and Error-Free Neural Network Prediction on Encrypted Data
Popis výsledku anglicky
With the rise of Cloud and Big Data technologies, Machine Learning as a Service (MLaaS) receives much attention, too. However, in some sense, the current situation resembles the era of wild digitalization, where security was pushed to the sideline. Back then, the problem was mostly about misunderstanding of severe consequences that insecure digitalization might bring. To date, common awareness of security has improved significantly, however, currently we are facing rather a technological challenge. Indeed, we are still missing a competitive and satisfactory solution that would secure MLaaS. In this paper, we contribute to the very recent line of research, which utilizes a Fully Homomorphic Encryption (FHE) scheme by Chillotti et al. named TFHE. It has been shown that TFHE is particularly suitable for securing MLaaS. In addition, its security relies on the famous LWE problem, which is considered quantum-proof. However, it has not been studied yet how all the TFHE parameters are to be set. Hence we provide a thorough analysis of error propagation through TFHE homomorphic computations, based on which we derive constraints on the parameters as well as we suggest a convenient representation of internal objects. We particularly focus on effective resource utilization in order to achieve the best performance of any prospective implementation.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Intelligent Computing
ISBN
978-3-030-80128-1
ISSN
2367-3370
e-ISSN
2367-3389
Počet stran výsledku
20
Strana od-do
702-721
Název nakladatele
Springer Nature Switzerland AG
Místo vydání
Basel
Místo konání akce
London
Datum konání akce
15. 7. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—