A Practical TFHE-Based Multi-Key Homomorphic Encryption with Linear Complexity and Low Noise Growth
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00371461" target="_blank" >RIV/68407700:21230/24:00371461 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-031-50594-2_1" target="_blank" >https://doi.org/10.1007/978-3-031-50594-2_1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-50594-2_1" target="_blank" >10.1007/978-3-031-50594-2_1</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Practical TFHE-Based Multi-Key Homomorphic Encryption with Linear Complexity and Low Noise Growth
Popis výsledku v původním jazyce
Fully Homomorphic Encryption enables arbitrary computations over encrypted data and it has a multitude of applications, e.g., secure cloud computing in healthcare or finance. Multi-Key Homomorphic Encryption (MKHE) further allows to process encrypted data from multiple sources: the data can be encrypted with keys owned by different parties. In this paper, we propose a new variant of MKHE instantiated with the TFHE scheme. Compared to previous attempts by Chen et al. and by Kwak et al., our scheme achieves computation runtime that is linear in the number of involved parties and it outperforms the faster scheme by a factor of 4.5–6.9x, at the cost of a slightly extended pre-computation. In addition, for our scheme, we propose and practically evaluate parameters for up to 128 parties, which enjoy the same estimated security as parameters suggested for the previous schemes (100 bits). It is also worth noting that our scheme—unlike the previous schemes—did not experience any error in any of our seven setups, each running 1000 trials.
Název v anglickém jazyce
A Practical TFHE-Based Multi-Key Homomorphic Encryption with Linear Complexity and Low Noise Growth
Popis výsledku anglicky
Fully Homomorphic Encryption enables arbitrary computations over encrypted data and it has a multitude of applications, e.g., secure cloud computing in healthcare or finance. Multi-Key Homomorphic Encryption (MKHE) further allows to process encrypted data from multiple sources: the data can be encrypted with keys owned by different parties. In this paper, we propose a new variant of MKHE instantiated with the TFHE scheme. Compared to previous attempts by Chen et al. and by Kwak et al., our scheme achieves computation runtime that is linear in the number of involved parties and it outperforms the faster scheme by a factor of 4.5–6.9x, at the cost of a slightly extended pre-computation. In addition, for our scheme, we propose and practically evaluate parameters for up to 128 parties, which enjoy the same estimated security as parameters suggested for the previous schemes (100 bits). It is also worth noting that our scheme—unlike the previous schemes—did not experience any error in any of our seven setups, each running 1000 trials.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
28th European Symposium on Research in Computer Security, The Hague, The Netherlands, September 25–29, 2023, Proceedings, Part I
ISBN
978-3-031-50593-5
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
21
Strana od-do
3-23
Název nakladatele
Springer Nature Switzerland AG
Místo vydání
Basel
Místo konání akce
The Hague
Datum konání akce
25. 9. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001208355200001