Grid Representation in Neural Networks for Automated Planning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00358914" target="_blank" >RIV/68407700:21230/22:00358914 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.5220/0010918500003116" target="_blank" >https://doi.org/10.5220/0010918500003116</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5220/0010918500003116" target="_blank" >10.5220/0010918500003116</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Grid Representation in Neural Networks for Automated Planning
Popis výsledku v původním jazyce
Automated planning and machine learning create a powerful combination of tools which allows us to apply general problem solving techniques to problems that are not modeled using classical planning techniques. In real-world scenarios and complex domains, creating a standardized representation is often a bottleneck as it has to be modeled by a human. That often limits the usage of planning algorithms to real-world problems. The standardized representation is also not a suitable for neural network processing and often requires further transformation. In this work, we focus on presenting three different grid representations that are well suited to model a variety of classical planning problems which can be then processed by neural networks without further modifications. We also analyze classical planning benchmarks in order to find domains that correspond to our proposed representations. Furthermore, we also show that domains that are not explicitly defined on a grid can be represented on a grid with minor modifications that are domain specific. We discuss advantages and drawbacks of our proposed representations, provide examples for many planning benchmarks and also discuss the importance of data and its structure when training neural networks for planning.
Název v anglickém jazyce
Grid Representation in Neural Networks for Automated Planning
Popis výsledku anglicky
Automated planning and machine learning create a powerful combination of tools which allows us to apply general problem solving techniques to problems that are not modeled using classical planning techniques. In real-world scenarios and complex domains, creating a standardized representation is often a bottleneck as it has to be modeled by a human. That often limits the usage of planning algorithms to real-world problems. The standardized representation is also not a suitable for neural network processing and often requires further transformation. In this work, we focus on presenting three different grid representations that are well suited to model a variety of classical planning problems which can be then processed by neural networks without further modifications. We also analyze classical planning benchmarks in order to find domains that correspond to our proposed representations. Furthermore, we also show that domains that are not explicitly defined on a grid can be represented on a grid with minor modifications that are domain specific. We discuss advantages and drawbacks of our proposed representations, provide examples for many planning benchmarks and also discuss the importance of data and its structure when training neural networks for planning.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
ICAART: PROCEEDINGS OF THE 14TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE - VOL 3
ISBN
978-989-758-547-0
ISSN
—
e-ISSN
2184-433X
Počet stran výsledku
10
Strana od-do
871-880
Název nakladatele
SciTePress - Science and Technology Publications
Místo vydání
Porto
Místo konání akce
Online Streaming
Datum konání akce
3. 3. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000774776400106