Semantically Layered Representation for Planning Problems and Its Usage for Heuristic Computation Using Cellular Simultaneous Recurrent Neural Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00364355" target="_blank" >RIV/68407700:21230/23:00364355 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.5220/0011691000003393" target="_blank" >https://doi.org/10.5220/0011691000003393</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5220/0011691000003393" target="_blank" >10.5220/0011691000003393</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Semantically Layered Representation for Planning Problems and Its Usage for Heuristic Computation Using Cellular Simultaneous Recurrent Neural Networks
Popis výsledku v původním jazyce
Learning heuristic functions for classical planning algorithms has been a great challenge in the past years. The biggest bottleneck of this technique is the choice of an appropriate description of the planning problem suitable for machine learning. Various approaches were recently suggested in the literature, namely grid-based, image-like, and graph-based. In this work, we extend the latest grid-based representation with layered architecture capturing the semantics of the related planning problem. Such an approach can be used as a domain-independent model for further heuristic learning. This representation keeps the advantages of the grid-structured input and provides further semantics about the problem we can learn from. Together with the representation, we also propose a new network architecture based on the Cellular Simultaneous Recurrent Networks (CSRN) that is capable of learning from such data and can be used instead of a heuristic function in the state-space search algorithms.
Název v anglickém jazyce
Semantically Layered Representation for Planning Problems and Its Usage for Heuristic Computation Using Cellular Simultaneous Recurrent Neural Networks
Popis výsledku anglicky
Learning heuristic functions for classical planning algorithms has been a great challenge in the past years. The biggest bottleneck of this technique is the choice of an appropriate description of the planning problem suitable for machine learning. Various approaches were recently suggested in the literature, namely grid-based, image-like, and graph-based. In this work, we extend the latest grid-based representation with layered architecture capturing the semantics of the related planning problem. Such an approach can be used as a domain-independent model for further heuristic learning. This representation keeps the advantages of the grid-structured input and provides further semantics about the problem we can learn from. Together with the representation, we also propose a new network architecture based on the Cellular Simultaneous Recurrent Networks (CSRN) that is capable of learning from such data and can be used instead of a heuristic function in the state-space search algorithms.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 15th International Conference on Agents and Artificial Intelligence
ISBN
978-989-758-623-1
ISSN
2184-3589
e-ISSN
2184-433X
Počet stran výsledku
8
Strana od-do
493-500
Název nakladatele
SCITEPRESS – Science and Technology Publications, Lda
Místo vydání
Lisboa
Místo konání akce
Lisbon
Datum konání akce
22. 2. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—