Detecting Early Signs of Depression in the Conversational Domain: The Role of Transfer Learning in Low-Resource Scenarios
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00359317" target="_blank" >RIV/68407700:21230/22:00359317 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21730/22:00359317
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-031-08473-7_33" target="_blank" >https://doi.org/10.1007/978-3-031-08473-7_33</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-08473-7_33" target="_blank" >10.1007/978-3-031-08473-7_33</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Detecting Early Signs of Depression in the Conversational Domain: The Role of Transfer Learning in Low-Resource Scenarios
Popis výsledku v původním jazyce
The high prevalence of depression in society has given rise to the need for new digital tools to assist in its early detection. To this end, existing research has mainly focused on detecting depression in the domain of social media, where there is a sufficient amount of data. However, with the rise of conversational agents like Siri or Alexa, the conversational domain is becoming more critical. Unfortunately, there is a lack of data in the conversational domain. We perform a study focusing on domain adaptation from social media to the conversational domain. Our approach mainly exploits the linguistic information preserved in the vector representation of text. We describe transfer learning techniques to classify users who suffer from early signs of depression with high recall. We achieve state-of-the-art results on a commonly used conversational dataset, and we highlight how the method can easily be used in conversational agents. We publicly release all source code.
Název v anglickém jazyce
Detecting Early Signs of Depression in the Conversational Domain: The Role of Transfer Learning in Low-Resource Scenarios
Popis výsledku anglicky
The high prevalence of depression in society has given rise to the need for new digital tools to assist in its early detection. To this end, existing research has mainly focused on detecting depression in the domain of social media, where there is a sufficient amount of data. However, with the rise of conversational agents like Siri or Alexa, the conversational domain is becoming more critical. Unfortunately, there is a lack of data in the conversational domain. We perform a study focusing on domain adaptation from social media to the conversational domain. Our approach mainly exploits the linguistic information preserved in the vector representation of text. We describe transfer learning techniques to classify users who suffer from early signs of depression with high recall. We achieve state-of-the-art results on a commonly used conversational dataset, and we highlight how the method can easily be used in conversational agents. We publicly release all source code.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Natural Language Processing and Information Systems
ISBN
978-3-031-08472-0
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
12
Strana od-do
358-369
Název nakladatele
Springer, Cham
Místo vydání
—
Místo konání akce
Valencia
Datum konání akce
15. 6. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000870296500033