Metric Learning and Adaptive Boundary for Out-of-Domain Detection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00359318" target="_blank" >RIV/68407700:21230/22:00359318 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21730/22:00359318
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-031-08473-7_12" target="_blank" >https://doi.org/10.1007/978-3-031-08473-7_12</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-08473-7_12" target="_blank" >10.1007/978-3-031-08473-7_12</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Metric Learning and Adaptive Boundary for Out-of-Domain Detection
Popis výsledku v původním jazyce
Conversational agents are usually designed for closed-world environments. Unfortunately, users can behave unexpectedly. Based on the open-world environment, we often encounter the situation that the training and test data are sampled from different distributions. Then, data from different distributions are called out-of-domain (OOD). A robust conversational agent needs to react to these OOD utterances adequately. Thus, the importance of robust OOD detection is emphasized. Unfortunately, collecting OOD data is a challenging task. We have designed an OOD detection algorithm independent of OOD data that outperforms a wide range of current state-of-the-art algorithms on publicly available datasets. Our algorithm is based on a simple but efficient approach of combining metric learning with adaptive decision boundary. Furthermore, compared to other algorithms, we have found that our proposed algorithm has significantly improved OOD performance in a scenario with a lower number of classes while preserving the accuracy for in-domain (IND) classes.
Název v anglickém jazyce
Metric Learning and Adaptive Boundary for Out-of-Domain Detection
Popis výsledku anglicky
Conversational agents are usually designed for closed-world environments. Unfortunately, users can behave unexpectedly. Based on the open-world environment, we often encounter the situation that the training and test data are sampled from different distributions. Then, data from different distributions are called out-of-domain (OOD). A robust conversational agent needs to react to these OOD utterances adequately. Thus, the importance of robust OOD detection is emphasized. Unfortunately, collecting OOD data is a challenging task. We have designed an OOD detection algorithm independent of OOD data that outperforms a wide range of current state-of-the-art algorithms on publicly available datasets. Our algorithm is based on a simple but efficient approach of combining metric learning with adaptive decision boundary. Furthermore, compared to other algorithms, we have found that our proposed algorithm has significantly improved OOD performance in a scenario with a lower number of classes while preserving the accuracy for in-domain (IND) classes.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Natural Language Processing and Information Systems
ISBN
978-3-031-08472-0
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
8
Strana od-do
127-134
Název nakladatele
Springer, Cham
Místo vydání
—
Místo konání akce
Valencia
Datum konání akce
15. 6. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000870296500012