Structure of preservers of range orthogonality on *-rings and C*-algebras
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00359334" target="_blank" >RIV/68407700:21230/22:00359334 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.laa.2022.02.025" target="_blank" >https://doi.org/10.1016/j.laa.2022.02.025</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.laa.2022.02.025" target="_blank" >10.1016/j.laa.2022.02.025</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Structure of preservers of range orthogonality on *-rings and C*-algebras
Popis výsledku v původním jazyce
The topic of this paper lies between algebraic theory of *-rings and *-algebras on one side, and analytic theory of C*-algebras on the other side. A map theta : A -> B between unital *-rings is called range orthogonal isomorphism if it is bijective and preserves range orthogonality in both directions. We show that any additive (resp. linear) range orthogonal isomorphism is canonical, that is, it is a *-isomorphism followed by multiplication from the right by an invertible element, provided that Ais generated by projections as a *-ring. In case of general * rings and *-algebras we show that direct summands generated by projections are well behaved with respect to range orthogonal morphisms. In particular, we show that additive range orthogonality isomorphisms are canonical on proper nonabelian parts of Baer *-algebras. We apply algebraic results to matrix C*-algebras to show that any range orthogonal isomorphisms between them is canonical. The same holds for C*-algebras having proper nonabelian part generated by projections. (C) 2022 Elsevier Inc. All rights reserved.
Název v anglickém jazyce
Structure of preservers of range orthogonality on *-rings and C*-algebras
Popis výsledku anglicky
The topic of this paper lies between algebraic theory of *-rings and *-algebras on one side, and analytic theory of C*-algebras on the other side. A map theta : A -> B between unital *-rings is called range orthogonal isomorphism if it is bijective and preserves range orthogonality in both directions. We show that any additive (resp. linear) range orthogonal isomorphism is canonical, that is, it is a *-isomorphism followed by multiplication from the right by an invertible element, provided that Ais generated by projections as a *-ring. In case of general * rings and *-algebras we show that direct summands generated by projections are well behaved with respect to range orthogonal morphisms. In particular, we show that additive range orthogonality isomorphisms are canonical on proper nonabelian parts of Baer *-algebras. We apply algebraic results to matrix C*-algebras to show that any range orthogonal isomorphisms between them is canonical. The same holds for C*-algebras having proper nonabelian part generated by projections. (C) 2022 Elsevier Inc. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000778" target="_blank" >EF16_019/0000778: Centrum pokročilých aplikovaných přírodních věd</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Linear Algebra and Its Applications
ISSN
0024-3795
e-ISSN
1873-1856
Svazek periodika
642
Číslo periodika v rámci svazku
JUN
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
21
Strana od-do
139-159
Kód UT WoS článku
000819927900008
EID výsledku v databázi Scopus
2-s2.0-85125449947