Terrain Traversal Cost Learning with Knowledge Transfer Between Multi-legged Walking Robot Gaits
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00359487" target="_blank" >RIV/68407700:21230/22:00359487 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/ICARSC55462.2022.9784790" target="_blank" >https://doi.org/10.1109/ICARSC55462.2022.9784790</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICARSC55462.2022.9784790" target="_blank" >10.1109/ICARSC55462.2022.9784790</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Terrain Traversal Cost Learning with Knowledge Transfer Between Multi-legged Walking Robot Gaits
Popis výsledku v původním jazyce
The terrain traversal abilities of multi-legged walking robots are affected by gaits, the walking patterns that enable adaptation to various operational environments. Fast and lowset gaits are suited to flat ground, while cautious and highset gaits enable traversing rough areas. A suitable gait can be selected using prior experience with a particular terrain type. However, experience alone is insufficient in practical setups, where the robot experiences each terrain with only one or just a few gaits and thus would infer novel gait-terrain interactions from insufficient data. Therefore, we use knowledge transfer to address unsampled gait-terrain interactions and infer the traversal cost for every gait. The proposed solution combines gaitterrain cost models using inferred gait-to-gait models projecting the robot experiences between different gaits. We implement the cost models as Gaussian Mixture regressors providing certainty to identify unknown terrains where knowledge transfer is desirable. The presented method has been verified in synthetic showcase scenarios and deployment with a real walking robot. The proposed knowledge transfer demonstrates improved cost prediction and selection of the appropriate gait for specific terrains.
Název v anglickém jazyce
Terrain Traversal Cost Learning with Knowledge Transfer Between Multi-legged Walking Robot Gaits
Popis výsledku anglicky
The terrain traversal abilities of multi-legged walking robots are affected by gaits, the walking patterns that enable adaptation to various operational environments. Fast and lowset gaits are suited to flat ground, while cautious and highset gaits enable traversing rough areas. A suitable gait can be selected using prior experience with a particular terrain type. However, experience alone is insufficient in practical setups, where the robot experiences each terrain with only one or just a few gaits and thus would infer novel gait-terrain interactions from insufficient data. Therefore, we use knowledge transfer to address unsampled gait-terrain interactions and infer the traversal cost for every gait. The proposed solution combines gaitterrain cost models using inferred gait-to-gait models projecting the robot experiences between different gaits. We implement the cost models as Gaussian Mixture regressors providing certainty to identify unknown terrains where knowledge transfer is desirable. The presented method has been verified in synthetic showcase scenarios and deployment with a real walking robot. The proposed knowledge transfer demonstrates improved cost prediction and selection of the appropriate gait for specific terrains.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2022 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS (ICARSC)
ISBN
978-1-6654-8217-2
ISSN
2573-9360
e-ISSN
2573-9387
Počet stran výsledku
6
Strana od-do
148-153
Název nakladatele
Institute of Electrical and Electronics Engineers
Místo vydání
New York
Místo konání akce
Santa Maria da Feira
Datum konání akce
29. 4. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000838705300026