Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Traversability Transfer Learning Between Robots with Different Cost Assessment Policies

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00359490" target="_blank" >RIV/68407700:21230/22:00359490 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1007/978-3-030-98260-7_21" target="_blank" >https://doi.org/10.1007/978-3-030-98260-7_21</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-98260-7_21" target="_blank" >10.1007/978-3-030-98260-7_21</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Traversability Transfer Learning Between Robots with Different Cost Assessment Policies

  • Popis výsledku v původním jazyce

    Predicting mobile robots' traversability over terrains is crucial to select safe and efficient paths through rough and unstructured environments. In multi-robot missions, knowledge transfer techniques can enable learning terrain traversability assessment the robots did not experience individually. The knowledge can be incrementally aggregated for homogeneous robots since they can treat foreign knowledge as their own. However, robots with different perceptions might experience the same terrain differently, so it is impossible to aggregate the shared knowledge directly. In this paper, we show how to learn a model that transfers the experience between heterogeneous robots, enabling each robot to use the whole sum of the experience of the multi-robot team. The proposed approach uses correlation to combine individual neural networks that assess the traversability of individual robots. The presented method has been verified in a real-world deployment of multi-legged walking robots with different cost assessment policies.

  • Název v anglickém jazyce

    Traversability Transfer Learning Between Robots with Different Cost Assessment Policies

  • Popis výsledku anglicky

    Predicting mobile robots' traversability over terrains is crucial to select safe and efficient paths through rough and unstructured environments. In multi-robot missions, knowledge transfer techniques can enable learning terrain traversability assessment the robots did not experience individually. The knowledge can be incrementally aggregated for homogeneous robots since they can treat foreign knowledge as their own. However, robots with different perceptions might experience the same terrain differently, so it is impossible to aggregate the shared knowledge directly. In this paper, we show how to learn a model that transfers the experience between heterogeneous robots, enabling each robot to use the whole sum of the experience of the multi-robot team. The proposed approach uses correlation to combine individual neural networks that assess the traversability of individual robots. The presented method has been verified in a real-world deployment of multi-legged walking robots with different cost assessment policies.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Modelling and Simulation for Autonomus Systems

  • ISBN

    978-3-030-98259-1

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Počet stran výsledku

    12

  • Strana od-do

    333-344

  • Název nakladatele

    Springer-Verlag

  • Místo vydání

    Berlin

  • Místo konání akce

    Virtual

  • Datum konání akce

    20. 10. 2022

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000787774900021