Deep Transfer Learning of Traversability Assessment for Heterogeneous Robots
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00364546" target="_blank" >RIV/68407700:21230/22:00364546 - isvavai.cz</a>
Výsledek na webu
<a href="https://ceur-ws.org/Vol-3226/paper1.pdf" target="_blank" >https://ceur-ws.org/Vol-3226/paper1.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Deep Transfer Learning of Traversability Assessment for Heterogeneous Robots
Popis výsledku v původním jazyce
For autonomous robots operating in an unknown environment, it is important to assess the traversability of the surrounding terrain to improve path planning and decision-making on where to navigate next in a cost-efficient way. Specifically, in mobile robot exploration, terrains and their traversability are unknown prior to the deployment. The robot needs to use its limited resources to learn its terrain traversability model on the go; however, reusing a provided model is still a desirable option. In a team of heterogeneous robots, the models assessing traversability cannot be reused directly since robots might possess different morphology or sensory equipment and thus experience the terrain differently. In this paper, we propose a transfer learning approach for convolutional neural networks assessing the traversability between heterogeneous robots, where the transferred network is retrained using data available for the target robot to accommodate itself to the robot’s traversability. The proposed method is verified in real-world experiments, where the proposed approach provides faster learning convergence and better traversal cost predictions than the baseline.
Název v anglickém jazyce
Deep Transfer Learning of Traversability Assessment for Heterogeneous Robots
Popis výsledku anglicky
For autonomous robots operating in an unknown environment, it is important to assess the traversability of the surrounding terrain to improve path planning and decision-making on where to navigate next in a cost-efficient way. Specifically, in mobile robot exploration, terrains and their traversability are unknown prior to the deployment. The robot needs to use its limited resources to learn its terrain traversability model on the go; however, reusing a provided model is still a desirable option. In a team of heterogeneous robots, the models assessing traversability cannot be reused directly since robots might possess different morphology or sensory equipment and thus experience the terrain differently. In this paper, we propose a transfer learning approach for convolutional neural networks assessing the traversability between heterogeneous robots, where the transferred network is retrained using data available for the target robot to accommodate itself to the robot’s traversability. The proposed method is verified in real-world experiments, where the proposed approach provides faster learning convergence and better traversal cost predictions than the baseline.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GC21-33041J" target="_blank" >GC21-33041J: Učení plánování pohybu ve složitých úlohách</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 22nd Conference Information Technologies – Applications and Theory (ITAT 2022)
ISBN
—
ISSN
1613-0073
e-ISSN
—
Počet stran výsledku
9
Strana od-do
12-20
Název nakladatele
CEUR Workshop Proceedings
Místo vydání
Aachen
Místo konání akce
Zuberec
Datum konání akce
23. 9. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—