GNG-based Clustering of Risk-aware Trajectories into Safe Corridors
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00359519" target="_blank" >RIV/68407700:21230/22:00359519 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-031-15444-7_9" target="_blank" >https://doi.org/10.1007/978-3-031-15444-7_9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-15444-7_9" target="_blank" >10.1007/978-3-031-15444-7_9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
GNG-based Clustering of Risk-aware Trajectories into Safe Corridors
Popis výsledku v původním jazyce
Personal air transportation on short distances is a promising trend in modern aviation, raising new challenges as flying in low altitudes in highly populated environments induces additional risk to people and properties on the ground. Risk-aware planning can mitigate the risk by preferring flying above low-risk areas such as rivers or brownfields. Finding such trajectories is computationally demanding, but they can be precomputed for areas that are not changing rapidly and form a planning roadmap. The roadmap can be utilized for multi-query trajectory planning using graph-based search. However, a quality roadmap is required to provide a low-risk trajectory for an arbitrary query on a risk-aware trajectory from one location to another. Even though a dense roadmap can achieve the quality, it would be computationally demanding. Therefore, we propose to cluster the found trajectories and create a sparse roadmap of safe corridors that provide similar quality of risk-aware trajectories. In this paper, we report on applying Growing Neural Gas (GNG) in estimating the suitable number of clusters. Based on the empirical evaluation using a realistic urban scenario, the results suggest a significant reduction of the computational burden on risk-aware trajectory planning using the roadmap with the clustered safe corridors.
Název v anglickém jazyce
GNG-based Clustering of Risk-aware Trajectories into Safe Corridors
Popis výsledku anglicky
Personal air transportation on short distances is a promising trend in modern aviation, raising new challenges as flying in low altitudes in highly populated environments induces additional risk to people and properties on the ground. Risk-aware planning can mitigate the risk by preferring flying above low-risk areas such as rivers or brownfields. Finding such trajectories is computationally demanding, but they can be precomputed for areas that are not changing rapidly and form a planning roadmap. The roadmap can be utilized for multi-query trajectory planning using graph-based search. However, a quality roadmap is required to provide a low-risk trajectory for an arbitrary query on a risk-aware trajectory from one location to another. Even though a dense roadmap can achieve the quality, it would be computationally demanding. Therefore, we propose to cluster the found trajectories and create a sparse roadmap of safe corridors that provide similar quality of risk-aware trajectories. In this paper, we report on applying Growing Neural Gas (GNG) in estimating the suitable number of clusters. Based on the empirical evaluation using a realistic urban scenario, the results suggest a significant reduction of the computational burden on risk-aware trajectory planning using the roadmap with the clustered safe corridors.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization
ISBN
978-3-031-15443-0
ISSN
2367-3370
e-ISSN
2367-3389
Počet stran výsledku
11
Strana od-do
87-97
Název nakladatele
Springer, Cham
Místo vydání
—
Místo konání akce
Prague
Datum konání akce
6. 7. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000892398300009