A normative model of peripersonal space encoding as performing impact prediction
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00360155" target="_blank" >RIV/68407700:21230/22:00360155 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1371/journal.pcbi.1010464" target="_blank" >https://doi.org/10.1371/journal.pcbi.1010464</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1371/journal.pcbi.1010464" target="_blank" >10.1371/journal.pcbi.1010464</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A normative model of peripersonal space encoding as performing impact prediction
Popis výsledku v původním jazyce
Accurately predicting contact between our bodies and environmental objects is paramount to our evolutionary survival. It has been hypothesized that multisensory neurons responding both to touch on the body, and to auditory or visual stimuli occurring near them—thus delineating our peripersonal space (PPS)—may be a critical player in this computation. However, we lack a normative account (i.e., a model specifying how we ought to compute) linking impact prediction and PPS encoding. Here, we leverage Bayesian Decision Theory to develop such a model and show that it recapitulates many of the characteristics of PPS. Namely, a normative model of impact prediction (i) delineates a graded boundary between near and far space, (ii) demonstrates an enlargement of PPS as the speed of incoming stimuli increases, (iii) shows stronger contact prediction for looming than receding stimuli—but critically is still present for receding stimuli when observation uncertainty is non-zero—, (iv) scales with the value we attribute to environmental objects, and finally (v) can account for the differing sizes of PPS for different body parts. Together, these modeling results support the conjecture that PPS reflects the computation of impact prediction, and make a number of testable predictions for future empirical studies.
Název v anglickém jazyce
A normative model of peripersonal space encoding as performing impact prediction
Popis výsledku anglicky
Accurately predicting contact between our bodies and environmental objects is paramount to our evolutionary survival. It has been hypothesized that multisensory neurons responding both to touch on the body, and to auditory or visual stimuli occurring near them—thus delineating our peripersonal space (PPS)—may be a critical player in this computation. However, we lack a normative account (i.e., a model specifying how we ought to compute) linking impact prediction and PPS encoding. Here, we leverage Bayesian Decision Theory to develop such a model and show that it recapitulates many of the characteristics of PPS. Namely, a normative model of impact prediction (i) delineates a graded boundary between near and far space, (ii) demonstrates an enlargement of PPS as the speed of incoming stimuli increases, (iii) shows stronger contact prediction for looming than receding stimuli—but critically is still present for receding stimuli when observation uncertainty is non-zero—, (iv) scales with the value we attribute to environmental objects, and finally (v) can account for the differing sizes of PPS for different body parts. Together, these modeling results support the conjecture that PPS reflects the computation of impact prediction, and make a number of testable predictions for future empirical studies.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10602 - Biology (theoretical, mathematical, thermal, cryobiology, biological rhythm), Evolutionary biology
Návaznosti výsledku
Projekt
<a href="/cs/project/GX20-24186X" target="_blank" >GX20-24186X: Vědomí celého povrchu těla pro bezpečnou a přirozenou interakci: od mozku ke kolaborativním robotům</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
PLOS Computational Biology
ISSN
1553-734X
e-ISSN
1553-7358
Svazek periodika
18
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
23
Strana od-do
—
Kód UT WoS článku
000913758000001
EID výsledku v databázi Scopus
2-s2.0-85138213861