Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

ChunkyGAN: Real Image Inversion via Segments

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00360787" target="_blank" >RIV/68407700:21230/22:00360787 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1007/978-3-031-20050-2_12" target="_blank" >https://doi.org/10.1007/978-3-031-20050-2_12</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-20050-2_12" target="_blank" >10.1007/978-3-031-20050-2_12</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    ChunkyGAN: Real Image Inversion via Segments

  • Popis výsledku v původním jazyce

    We present ChunkyGAN—a novel paradigm for modeling and editing images using generative adversarial networks. Unlike previous techniques seeking a global latent representation of the input image, our approach subdivides the input image into a set of smaller components (chunks) specified either manually or automatically using a pre-trained segmentation network. For each chunk, the latent code of a generative network is estimated locally with greater accuracy thanks to a smaller number of constraints. Moreover, during the optimization of latent codes, segmentation can further be refined to improve matching quality. This process enables high-quality projection of the original image with spatial disentanglement that previous methods would find challenging to achieve. To demonstrate the advantage of our approach, we evaluated it quantitatively and also qualitatively in various image editing scenarios that benefit from the higher reconstruction quality and local nature of the approach. Our method is flexible enough to manipulate even out-of-domain images that would be hard to reconstruct using global techniques.

  • Název v anglickém jazyce

    ChunkyGAN: Real Image Inversion via Segments

  • Popis výsledku anglicky

    We present ChunkyGAN—a novel paradigm for modeling and editing images using generative adversarial networks. Unlike previous techniques seeking a global latent representation of the input image, our approach subdivides the input image into a set of smaller components (chunks) specified either manually or automatically using a pre-trained segmentation network. For each chunk, the latent code of a generative network is estimated locally with greater accuracy thanks to a smaller number of constraints. Moreover, during the optimization of latent codes, segmentation can further be refined to improve matching quality. This process enables high-quality projection of the original image with spatial disentanglement that previous methods would find challenging to achieve. To demonstrate the advantage of our approach, we evaluated it quantitatively and also qualitatively in various image editing scenarios that benefit from the higher reconstruction quality and local nature of the approach. Our method is flexible enough to manipulate even out-of-domain images that would be hard to reconstruct using global techniques.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Výzkumné centrum informatiky</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Computer Vision – ECCV 2022, Part XXIII

  • ISBN

    978-3-031-20049-6

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Počet stran výsledku

    16

  • Strana od-do

    189-204

  • Název nakladatele

    Springer

  • Místo vydání

    Cham

  • Místo konání akce

    Tel Aviv

  • Datum konání akce

    23. 10. 2022

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000904146300012