Electrochemical Impedance Spectroscopy Processing and Modelling for Lithium-ion Batteries Using Python and Jupiter
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00360879" target="_blank" >RIV/68407700:21230/22:00360879 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/ISSE54558.2022.9812762" target="_blank" >https://doi.org/10.1109/ISSE54558.2022.9812762</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ISSE54558.2022.9812762" target="_blank" >10.1109/ISSE54558.2022.9812762</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Electrochemical Impedance Spectroscopy Processing and Modelling for Lithium-ion Batteries Using Python and Jupiter
Popis výsledku v původním jazyce
This paper describes how to model a Lithium-ion battery's internal characteristics based on electrochemical impedance spectroscopy (EIS) data and their fitting into an Equivalent Circuit Model (ECM) using Python and the Jupyter development environment. The described method is used on an extensive dataset collected during an ageing campaign of lithium-ion batteries. The work aims to determine the correct values of ECM elements with satisfactory accuracy. The battery's ECM parameter interpretation provides essential information about its internal structure and mechanisms, which helps to understand its processes and estimate its future degradation. It was necessary to deal with two tasks: first, the processing of many measurements, and second, estimating the appropriate input parameters for the ECM. We have managed to practically automate the processing of more than one thousand files with measured data and design and gradually refine a method for estimating input parameters for ECM fitting.
Název v anglickém jazyce
Electrochemical Impedance Spectroscopy Processing and Modelling for Lithium-ion Batteries Using Python and Jupiter
Popis výsledku anglicky
This paper describes how to model a Lithium-ion battery's internal characteristics based on electrochemical impedance spectroscopy (EIS) data and their fitting into an Equivalent Circuit Model (ECM) using Python and the Jupyter development environment. The described method is used on an extensive dataset collected during an ageing campaign of lithium-ion batteries. The work aims to determine the correct values of ECM elements with satisfactory accuracy. The battery's ECM parameter interpretation provides essential information about its internal structure and mechanisms, which helps to understand its processes and estimate its future degradation. It was necessary to deal with two tasks: first, the processing of many measurements, and second, estimating the appropriate input parameters for the ECM. We have managed to practically automate the processing of more than one thousand files with measured data and design and gradually refine a method for estimating input parameters for ECM fitting.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2022 45th International Spring Seminar on Electronics Technology (ISSE)
ISBN
978-1-6654-6589-2
ISSN
2161-2528
e-ISSN
2161-2536
Počet stran výsledku
6
Strana od-do
1-6
Název nakladatele
IEEE Press
Místo vydání
New York
Místo konání akce
Vienna
Datum konání akce
11. 5. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000853642200012